首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reinforced concrete bridge columns exhibit complex hysteretic behavior owing to combined action of shear, bending moment, and axial force under multi‐directional seismic shakings. The inelastic displacement of columns can be increased by shear–flexure interaction (SFI). This paper develops a simple yet reliable demand model for estimating the inelastic displacement and ductility based on the nonlinear time history analyses of 24 full‐size columns subject to a suite of near‐fault ground motions. A coupled hysteretic model is used to simulate the shear‐flexure interactive (SFI) behavior of columns and the accumulated material damage during loading reversals, including pinching, strength deterioration, and stiffness softening. Guided by rigorous dimensional analysis, the inelastic displacement responses of bridge columns are presented in dimensionless form showing remarkable order. A dimensionless nonlinearity index is derived taking into account of the column strength, ground motion amplitude, and softening or hardening post‐yield behavior. Strong correlation is revealed between the normalized inelastic displacement and the dimensionless structure‐to‐pulse frequency, the dimensionless nonlinearity index as well as the aspect ratio. Two regressive equations for displacement and ductility demands are proposed and validated against the simulation results. The SFI effects are discussed and included explicitly through the aspect ratio in the proposed model. This study offers a new way to realistically predict the inelastic displacement of columns directly from structural and ground motion characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
混凝土的数值计算模型在滞回性能分析中往往比较难收敛,利用有限元软件ADINA提供Drucker-Prager模型的Cap修正屈服准则确立的非协调参数Drucker-Prager模型对预应力节段拼装混凝土桥墩进行数值分析,对预应力节段拼装桥墩在低周往复荷载作用下的滞回性能进行分析。通过比较采用非协调参数Drucker-Prager模型建立的数值模型计算得到的滞回曲线与试验得到的结果,两者吻合程度较高。基于这一成果可以通过数值模拟的方式获得预应力节段拼装桥墩的滞回曲线与相关数据,可应用于预应力节段拼装桥墩抗震计算和设计。  相似文献   

4.
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.  相似文献   

5.
在桩基础桥墩滞回特性的模型试验基础上,提出了用Clough模型模拟基础(地基)的恢复力特性。桥墩采用Takeda恢复力模型。用强震记录与人工合成地震动作为输入对铁路简支梁桥进行了非线性地震反应分析,讨论了不同地震动输入及不同地震强度时基础非线性对桥梁地震反应的影响。研究结果表明,考虑基础的非线性一般会使墩顶位移增大,而墩底的曲率明显减小,且随着地震动强度的增加,基础的非线性影响更加明显。  相似文献   

6.
为了研究地震作用下斜拉桥拉索松弛对独塔斜拉桥地震反应的影响,采用桁架单元模拟斜拉索,考虑拉索垂度效应,基于OpenSees平台建立了考虑成桥状态及拉索松弛的全桥有限元模型,输入5条强震记录进行地震反应分析,探究了斜拉索松弛及其对斜拉桥关键部位地震反应的影响规律。结果表明:强震作用下独塔斜拉桥的拉索会产生松弛,但拉索松弛现象仅发生在部分边索中;拉索松弛对最不利受力索的位置和最大索拉力影响可以忽略;拉索松弛可能增大也可能减小结构地震反应,其影响不可忽略且受地震动的频谱影响较大,应引起设计的注意。  相似文献   

7.
Past experimental studies have shown that existing precast segmental concrete bridge columns possess unsatisfactory hysteretic energy dissipation capacity, which is an undesirable feature for applications in seismic regions. In this research, we propose new methods of precast segment construction for tall concrete bridge columns to enhance the columns' hysteretic energy dissipation capacity and lateral strength. This is accomplished by adding bonded mild steel reinforcing bars across the segment joints, strengthening the joint at the base of the column and increasing the height of the base segment (hinge segment). Four large‐scale column specimens were fabricated and tested with lateral cyclic loading in the laboratory. Each specimen consisted of a foundation and 9 or 10 precast column segments. Test results of specimens with the proposed design concepts showed ductile behavior and satisfactory hysteretic energy dissipation capacity. In addition to the experimental study, an analytical study using the finite element method was conducted to understand the bond conditions, strain contours and deformation patterns of the specimens tested. Good agreement was found between the experimental observations and the results of the calibrated analytical study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
为研究不锈钢在循环荷载下的力学性能建模方法,基于OpenSees数值分析平台模拟国内外学者完成的奥氏体不锈钢和双相型不锈钢试件循环加载试验结果,以及配置奥氏体不锈钢的节段拼装桥墩拟静力试验结果。模拟结果与试验结果的对比表明:模拟得到的不锈钢循环加载下的应力-应变滞回曲线与试验结果吻合良好,数值模型可预测奥氏体不锈钢和双相型不锈钢在不同循环加载方式下的响应。不锈钢在单调加载与循环加载下的力学性能有较大区别,应分别建模和取值。配置奥氏体不锈钢的摇摆-自复位节段拼装桥墩滞回性能模拟结果与试验结果吻合较好,进一步验证了不锈钢力学性能建模方法的准确性。  相似文献   

9.
目的是解析地预测钢筋混凝土桥墩在反复荷载作用下的非线性滞回特性。使用实验中得到的力一位移滞回曲线,对随轴压比,配筋率和配箍率的变化而变化的刚度和强度折减系数,进行了回归分析,并提出了其表达式。按照提出的理论力一位移滞回模型,能够预测现存钢筋混凝土桥墩的刚度和强度折减情况。  相似文献   

10.
武芳文  薛成凤  赵雷 《地震学报》2010,32(2):193-202
斜拉桥地震反应不同于其它桥型,具有明显的空间耦合效应.利用有限元理论对苏通长江公路大桥的空间抗震性能进行分析,重点研究行波效应对结构响应的影响,并与一致激励计算的结果进行比较,为大跨度斜拉桥抗震分析采用随机方法提供了一定的参考依据.研究结果表明,行波效应对斜拉桥结构内力有显著的影响,大跨度斜拉桥抗震性能分析必须考虑行波效应.而行波效应的影响与结构自身动力特性、视波速、构件位置及研究响应类型(位移与内力)相关.  相似文献   

11.
为了明确天津市软土地基对地铁车站的结构地震反应的影响规律,以天津市地铁3号线的昆明路站为工程背景,采用数值模拟分析的方法,研究了该地铁站的地震反应。通过建立二维平面有限元模型,分析了结构抗震薄弱环节及结构抗震性能的影响因素。研究结果表明:天津宁河波作用下结构中柱内力响应明显大于其他构件,且柱底连接处内力幅值最大,为结构抗震薄弱环节;周围土层的弹性模量及上覆土层厚度对结构抗震性能的影响更明显,而结构自身的等效弹性模量对结构抗震性能影响不明显。研究成果丰富了软土地区地铁车站抗震设计理论,对地铁车站的优化设计具有重要意义。  相似文献   

12.
文中以OPENSEES有限元软件为工具,利用基于柔度法的钢筋混凝土柱纤维单元,考虑钢筋与混凝土材料的应变率效应,对钢筋混凝土柱进行了动态响应分析,并用试验结果验证了文中方法的正确性.通过数值模拟,研究了钢筋混凝土柱在不同轴压比、不同混凝土强度、不同纵筋率条件下的动态力学特性.结果表明,随着轴压比的提高,钢筋混凝土柱的应...  相似文献   

13.
An efficient component model has been developed that captures strength and stiffness deterioration of steel hollow structural section (HSS) columns. The proposed model consists of two fiber-based segments at a member's ends along with an elastic segment in between. The fibers exhibit nonlinear uniaxial stress–strain behavior, which is explicitly defined by uniaxial monotonic tensile and cyclic round coupon tests. The postbuckling behavior of an HSS column is traced through a proposed uniaxial effective stress–strain constitutive formulation, which includes a softening branch in compression and an energy-based deterioration rule to trace the influence of cyclic deterioration in the inelastic cyclic straining. These may be inferred by uniaxial stub-column tests. The component model captures the coupling between the column axial force and flexural demands. Consistent model parameters for a number of steel materials used in the steel construction in North America and Japan are proposed along with the associated model calibration process. The efficiency of the proposed model in predicting the hysteretic behavior of HSS columns is demonstrated by comparisons with physical steel column tests subjected to various loading histories, including representative ones of ratcheting prior to earthquake-induced collapse. The proposed model is implemented in an open-source finite element software for nonlinear response history analysis of frame structures. The effectiveness of the proposed model in simulating dynamic instability of steel frame buildings is demonstrated through nonlinear response simulations of a four-story steel frame building, which was tested at full-scale through collapse. Limitations as well as suggestions for future work are discussed.  相似文献   

14.
The nonlinear behavior of reinforced concrete (RC) members represents a key issue in the seismic performance assessment of structures. Many structures constructed in the 1980s or earlier were designed based on force limits; thus they often exhibit brittle failure modes, strength and stiffness degradation, and severe pinching effects. Field surveys and experimental evidence have demonstrated that such inelastic responses affect the global behavior of RC structural systems. Efforts have been made to consider the degrading stiffness and strength in the simplified nonlinear static procedures commonly adopted by practitioners. This paper investigates the accuracy of such procedures for the seismic performance assessment of RC structural systems. Refined finite element models of a shear critical bridge bent and a flexure‐critical bridge pier are used as reference models. The numerical models are validated against experimental results and used to evaluate the inelastic dynamic response of the structures subjected to earthquake ground motions with increasing amplitude. The maximum response from the refined numerical models is compared against the results from the simplified static procedures, namely modified capacity spectrum method and coefficient method in FEMA‐440. The accuracy of the static procedures in estimating the displacement demand of a flexure‐critical system and shear‐critical system is discussed in detail. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Strong-motion accelerograms obtained on the San Juan Bautista 156/101 Separation Bridge during the 6 August 1979 Coyote Lake, California, earthquake are used to examine the response of this multiple-span bridge to moderate levels of earthquake loading. Although the bridge was not damaged, the records are of significant engineering interest as they are the first to be recorded on a highway bridge structure in North America. A technique of system identification is used to determine optimal modal parameters for linear models which can closely replicate the observed time-domain seismic response of the bridge. Time variations in frequency and damping in the horizontal response are identified using a moving-window analysis. A three-dimensional finite element model is developed to study the bridge response in detail. The first two horizontal modal frequencies computed from this model are in excellent agreement with information obtained during the system identification analysis provided the finite element model's expansion joints are locked, preventing relative translational motions from occurring across the joints. Locking is confirmed by the observed seismic deformations of the structure in the fundamental mode. Fundamental vertical frequencies of the individual spans, predicted by the finite element model, are in very good agreement with ambient vibration test data.  相似文献   

16.
A two-dimensional (2D) finite element analytical model is developed to analyze the seismic response of rigid highway bridge abutments, retaining and founded on dry sand. A well verified finite element code named FLEX is used for this purpose. The proposed model has the following characteristics: (1) The soil (dry sand in this study) is modeled by a 2D finite element grid; (2) The bridge abutment is molded as a rigid substructure; (3) The strength and deformation of the soil are modeled using the viscous cap constitutive model. This model consists of a failure surface and hardening cap together with an associated flow rule. The cap surface is activated for the soil under the wall to represent compaction during wall rocking. In addition, viscoelastic behavior is provided for representing the hysteretic-like damping of soil during dynamic loading; (4) Interface elements are used between the wall and the soil (at the backface of the wall and under its base) to allow for sliding and for debonding/recontact behavior; (5) The finite element grid is truncated by using an absorbing boundary approximation. Using this boundary at both sides of the grid simulates the horizontal radiation of energy scattered from the wall and the excavation. Shear beams are placed adjacent to the lateral boundaries from each side which give the far-field ground motion, for comparison with those computed adjacent to the boundaries. The analytical model is verified comparing predictions to results from dynamic centrifuge tests, with satisfactory agreement. The proposed model is used to study the dynamic response of an 8.0 m high and 3.0 m wide rigid bridge abutment (proportioned using the traditional approach to design) for different sinusoidal and earthquake acceleration input motions. The results from the analysis show that outward tilting of rigid bridge abutments is the dominant mode of response during dynamic shaking and that these abutments end up with a permanent outward tilt at the end of shaking. The results from all the analyzed cases of the 8.0 m high gravity retaining wall together with those from the analysis of the tilting wall centrifuge tests are discussed and used for proposing a practical method for evaluating the seismic response of rigid abutments during earthquakes.  相似文献   

17.
This paper presents general composed analytical models to predict the behavior of reinforced concrete (RC) bridge columns. The analytical models were developed in OpenSees to represent the common hysteretic behavior of RC bridge columns. The proposed composed models can accommodate flexure failure, flexure‐shear failure, and pure shear failure, which are observed in existing RC bridge piers. The accuracy of the models was verified using data from the static cyclic‐loading experiments of 16 single columns and one multi‐column bent and dynamical experiment from two pseudo‐dynamic tests. The results showed that the analytical models could simulate the nonlinear behavior until the post‐failure behavior, including the strength degradation, the buckling of the reinforcement, and the pinching effect. Therefore, a global view of the behavior of reinforcement concrete is prescribed as simply as possible from the academic perspective, and these models are expected to provide sufficient accuracy when applied in engineering practice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Earthquake safety assessment of concrete arch and gravity dams   总被引:9,自引:1,他引:8  
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessment of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrete subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range. Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.  相似文献   

19.
为讨论近断层地震动下摇摆-自复位(Rocking Self-Centering, RSC)桥墩连续梁的地震反应及其抗震优缺点。基于OpenSees有限元分析平台讨论了RSC桥墩三维建模方法,通过对6个试验构件的模拟,比较模拟与试验桥墩滞回曲线、预应力筋最大应力等指标,验证了模型准确性。建立设置RSC桥墩和普通钢筋混凝土(Reinforced Concrete, RC)桥墩的上部结构相同的两座连续梁桥,输入3组含有强速度脉冲的近断层地震波进行非线性动力时程分析,对比其抗震性能。结果表明:在0.4 g近断层地震动下,RSC桥墩与普通RC桥墩相比,RSC桥墩的最大位移角为普通RC桥墩的78.1%~97.6%,墩底曲率延性系数仅为普通RC桥墩的24.0%~34.0%,减小了桥墩的最大变形,也减轻了桥墩地震损伤,不利的一点是使用RSC桥墩会导致支座位移增大。RSC桥墩震后的残余位移较小,且预应力筋处于弹性受力阶段,为实现震后桥梁功能的快速恢复提供了条件。  相似文献   

20.
Nonlinear finite element (FE) modeling has been widely used to investigate the effects of seismic isolation on the response of bridges to earthquakes. However, most FE models of seismic isolated bridges (SIB) have used seismic isolator models calibrated from component test data, while the prediction accuracy of nonlinear FE models of SIB is rarely addressed by using data recorded from instrumented bridges. In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlinear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2 phases: component‐wise and system‐wise FEMU. The isolator model parameters obtained from 23 isolator component tests show large scatter, and poor goodness of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earthquake is obtained when most of those parameter sets are used for the isolator elements of the bridge model. In contrast, good agreement is obtained between the FE‐predicted and measured bridge response when the isolator model parameters are calibrated using the bridge response data recorded during the mega‐earthquake. Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization problems using high‐throughput cloud computing. The updated FE model is then used to reconstruct response quantities not recorded during the earthquake, gaining more insight into the effects of seismic isolation on the response of the bridge during the strong earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号