首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

2.
A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion, focusing on the effect of earthquake magnitude, site conditions, pulse duration, and statistical component. The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes, and the relationship between the vertical and horizontal ground motions is comparatively intricate. In addition, the effect of the near-fault ground motions on bridge performance is analyzed, considering both the material nonlinear characteristics and the P~? effect.  相似文献   

3.
Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on structural input energy based on the elastic and inelastic energy responses of structures.A comparison of the input energy spectra between the hanging wall and the footwall reveal that the structural input energy on the hanging wall is not amplified due to the short duration and low peak ground velocity to acceleration ratio(V/A).However,the larger demand of structural input energy on the footwall in the range of medium and long periods is observed and the demand increases up to 50% relative to the average level of structural input energy for rupture distances larger than 30 km.The importance of considering the footwall effect on structural input energy when comparing ground motions in the range of medium and long periods is recognized.  相似文献   

4.
To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-μ-T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verifi ed.  相似文献   

5.
Design spectra including effect of rupture directivity in near-fault region   总被引:4,自引:1,他引:4  
In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.  相似文献   

6.
Representation of near-fault pulse-type ground motions   总被引:7,自引:3,他引:4  
Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the fling-step or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.  相似文献   

7.
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these near- field effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.  相似文献   

8.
Permanent displacement of a bridge column can be directly measured during the inspection after near-fault earthquakes.However,the engineer needs to estimate the expected residual drift at the design stage to determine if the bridge seismic performance is satisfactory.The most direct method to estimate the residual displacement is nonlinear response history analysis,which is time consuming and cumbersome.Alternatively,an attractive but indirect method is generating estimated residual displacement spectra that depend on displacement ductility demand,column period,site conditions,and earthquake characteristics.Given the period and the expected displacement ductility demand for the column,the residual drift response spectra curves can be utilized to estimate the residual drift demand.Residual drift spectra that are applicable to RC bridge columns in different parts of the United States were developed based on nonlinear response history analyses using a comprehensive collection of recorded and synthetic near-fault ground motions and were linked to one-second spectral acceleration(S1)of the AASHTO maps.It was also found that the residual drift ratio is below one percent when S1 is less than 0.6 g.  相似文献   

9.
The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element method was adopted to calculate the ground motion in the horizontal layered half space. An analysis of peak ground acceleration (PGA) indicates that similar to the sub-shear situation, directivity also exists in the super-shear situation. However, there are some differences as tbllows: (1) The PGA of the fault-normal component decreases with super-shear velocity, and the areas that were significantly affected by directivity in the PGA field changed from a cone-shaped region in the forward direction in a sub-shear situation to a limited near-fault region in a super-shear situation. (2) The PGA of the fault-parallel and vertical component is not as sensitive as the fault-normal component to the increasing super-shear velocity. (3) The PGA of the fault-normal component is not always greater than the fault-parallel component when the rupture velocity exceeds the shear wave velocity.  相似文献   

10.
In this paper, the effect of pulse-type motions caused by forward directivity that can release huge amounts of energy in a short time period is studied on a telecommunication tower. Since telecommunication towers have longer periods, they are not as affected by seismic forces. Nevertheless, near source earthquakes characterized by high velocity and velocity pulses can change the behavior of these structures. For this reason, a telecommunication tower located near active faults was selected in this study. Considering the probable earthquake magnitude at the site and the distance of the tower from adjacent faults, nine simulated pulses and three near-fault earthquake records with forward directivity are selected and applied to a 3D fi nite element model of the tower. The results of nonlinear dynamic analysis, i.e., displacements and damage in the tower, indicate that the maximum displacement and drift ratio of the tower under the pulses are obviously affected by the ratio of the structure period to pulse period. When this ratio is decreased and close to 1.0, the maximum displacement and drift ratio are sharply increased and cause large displacements in the tower.  相似文献   

11.
基于分解方法的脉冲型地震动非弹性反应谱分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文旨在分析脉冲型地震动中不同频率的地震动分量对于原始地震动幅值及其非弹性反应谱的影响.首先以近期12次大地震的53条典型脉冲型地震动为数据基础,基于多尺度分解方法获取脉冲型地震动中的高频分量和低频分量.为与传统方法对比,本文获取了能够表征地震动脉冲特性的卓越分量及滤除卓越分量的剩余分量.然后对比分析原始地震动和4种地震动分量的幅值特征和非弹性反应谱的特性,以讨论地震动分量对原始地震动幅值参数及其非弹性反应谱的影响.最后结合简谐地震动模型和地震动分量的性质,讨论脉冲型地震动非弹性反应谱诸多特征的产生原因.分析发现,低频分量不仅是控制脉冲型地震动速度和位移幅值的主要因素,其对原始地震动的加速度幅值也具有不可忽略的影响.低频分量也是导致脉冲型地震动非弹性位移比谱偏大以及强度折减系数谱偏小的直接原因,从而造成结构在脉冲型地震动作用下需要具有更大的非弹性位移以及更高的强度需求.  相似文献   

12.
Failure of one-story precast structures consisting of cantilever columns connected by simply supported beams was widely reported throughout the epicentral regions of the last devastating earthquakes in Turkey. As a single degree of freedom system, precast columns are designed by using the elastic spectrum given in the seismic code and by considering a seismic load reduction factor which takes into account the inelastic behavior of the columns under seismic loads. Although the existing seismic codes consider near-fault shaking effects in the development of elastic response spectra, they do not currently consider the increased inelastic demands that may occur during near-fault ground motion. The current study consists of nonlinear time history analyses of various hypothetical columns having geometric and mass properties which are being used in Turkish precast industry and the evaluation of damage indexes (DI) in terms of peak ground velocity (PGV) and peak ground acceleration (PGA) of the used strong ground motions. It is achieved that near-fault earthquakes create more damages on the columns. This might be one of the main reasons for the collapse of several one-storey precast buildings which were well designed according to the seismic codes in the district of existing faults. The obtained PGV versus DI charts prove that if one increase the sectional dimensions and/or longitudinal reinforcement ratio of the column, the possible damage from near-fault shaking effects could be reduced.  相似文献   

13.
The effect of peak ground velocity (PGV) on single‐degree‐of‐freedom (SDOF) deformation demands and for certain ground‐motion features is described by using a total of 60 soil site records with source‐to‐site distances less than 23 km and moment magnitudes between 5.5 and 7.6. The observations based on these records indicate that PGV correlates well with the earthquake magnitude and provides useful information about the ground‐motion frequency content and strong‐motion duration that can play a role on the seismic demand of structures. The statistical results computed from non‐linear response history analyses of different hysteretic models highlight that PGV correlates better with the deformation demands with respect to other ground motion intensity measures. The choice of PGV as ground motion intensity decreases the dispersion due to record‐to‐record variability of SDOF deformation demands, particularly in the short period range. The central tendencies of deformation demands are sensitive to PGV and they may vary considerably as a function of the hysteretic model and structural period. The results provided in this study suggest a consideration of PGV as a stable candidate for ground motion intensity measure in simplified seismic assessment methods that are used to estimate structural performance for earthquake hazard analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes a new multi-step prediction method of EMD-ELM (empirical mode decomposition-extreme learning machine) to achieve the short-term prediction of strong earthquake ground motions. Firstly, the acceleration time histories of near-fault ground motions with nonstationary property are decomposed into several components of intrinsic mode functions (IMFs) with different characteristic scales by the technique of EMD. Subsequently, the ELM method is utilized to predict the IMF components. Moreover, the predicted values of each IMF component are superimposed, and the short-term prediction of ground motions is attained with low error. The predicted results of near-fault acceleration records demonstrate that the EMD-ELM method can realize multi-step prediction of acceleration records with relatively high accuracy. Finally, the elastic and inelastic acceleration, velocity and displacement responses of single degree of freedom (SDOF) systems are also predicted with satisfactory accuracy by EMD-ELM method.  相似文献   

15.
This paper presents a statistical study of the kinematic soil-foundation-structure interaction effects on the maximum inelastic deformation demands of structures. Discussed here is the inelastic displacement ratio defined as the maximum inelastic displacement demands of structures subjected to foundation input motions divide by those of structures subjected to free-field ground motions. The displacement ratio is computed for a wide period range of elasto-plastic single-degree-of-freedom (SDOF) systems with various levels of lateral strength ratios and with different sizes of foundations. Seventy-two earthquake ground motions recorded on firm soil with average shear wave velocities between 180 m/s and 360 m/s are adopted. The effects of period of vibration, level of lateral yielding strength and dimension of foundations are investigated. The results show that kinematic interaction will reduce the maximum inelastic displacement demands of structures, especially for systems with short periods of vibration, and the larger the foundation size the smaller the maximum inelastic displacement becomes. In addition, the inelastic displacement ratio is nearly not affected by the strength ratio of structures for systems with periods of vibration greater than about 0.3 s and with strength ratios smaller than about 3.0. Expressions obtained from nonlinear regression analyses are also proposed for estimating the effects of kinematic soil-foundation-structure interaction from the maximum deformation demand of the inelastic system subjected to free-field ground motions.  相似文献   

16.
Ground motions close to a ruptured fault resulting from forward-directivity are significantly different than other ground motions. These pulse-type motions can place severe demands on structures in the near-fault region. To aid in the characterization of these special type of ground motions, a simplified parameterization is proposed based on a representative amplitude, pulse period, and number of significant pulses in the velocity–time history. Empirical relationships were developed for estimating the peak ground velocity (PGV) and period of the velocity pulse (Tv) of available forward-directivity motions. PGV in the near-fault region varies significantly with magnitude and distance. Additionally, the PGV for soil sites are systematically larger than those at rocks sites. Tv is a function of moment magnitude and site conditions with most of the energy being concentrated within a narrow-period band centered on the pulse period. Hence, lower magnitude events, which produce lower pulse periods, might produce more damaging ground motions for the stiff structures more common in urban areas.  相似文献   

17.
18.
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BF, the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BF. Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults. Supported by: National Natural Science Foundation of China Under Grant No. 50408003; National Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China Under Grant No. 2006BAC13B01  相似文献   

19.
近断层地震动作用下钢筋混凝土桥墩的抗震性能   总被引:9,自引:2,他引:9  
通过对满足规范延性要求的12根典型钢筋混凝土桥墩试件的线性和非线性地震反应分析,指出在近断层地震动作用下满足延性需求与延性能力比小于1.0的桥墩仍可能发生严重破坏和倒塌,若考虑桥墩的地震损伤性能,允许的延性需求与延性能力比不宜超过0.6-0.8。讨论了桥墩延性抗震设计中强度折减系数Rμ和设计基底剪力系数BSC取值问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号