首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖敞水生境间磷交换的影响,探讨了富营养化驱动的底栖敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术.  相似文献   

2.
淀山湖水生维管束植物群落研究   总被引:15,自引:1,他引:15  
由文辉 《湖泊科学》1994,6(4):317-324
论述了淀山湖水生维管束植物的种类组成、分布、群落类型、群落的数量特征及演替。结果是:(1)湖中分布有26种水生维管束植物,隶属16科,21属;其优势种为苦草、菹草、马来眼子菜、芦苇等。(2)湖中水生植被呈不规则环带状分布,并可划分为挺水、浮叶、沉水三个植物带,12个主要水生维管束植物群落。(3)水生维管束植物的重要值以苦草最大,茨藻属植物最小。(4)淀山湖水生维管束植物群落有由沉水型向浮叶型、挺水型或漂浮型过渡的趋势。  相似文献   

3.
太湖大型底栖动物群落结构与水环境生物评价   总被引:3,自引:3,他引:0  
于2014年冬季和夏季调查太湖全湖116个样点的大型底栖动物,分析其群落结构及与环境因子的关系.共记录底栖动物55种,隶属3门7纲18目27科52属,底栖动物的平均密度和生物量分别为405.5 ind./m2和146.6 g/m2.优势度分析表明,河蚬(Corbicula fluminea)、铜锈环棱螺(Bellamya aeruginosa)、霍甫水丝蚓(Limnodrilus hoffmeisteri)、太湖大螯蜚(Grandidierella aihuensis)、寡鳃齿吻沙蚕(Nephtys oligobranchia)和拟背尾水虱属一种(Paranthura sp.)是太湖大型底栖动物的优势种.基于环境因子聚类分析,可将全湖分为3个区:敞水区、水生植被区和富营养区.方差分析表明各湖区间环境因子差异显著.统计分析表明,3个区底栖动物群落结构相似性低,差异显著.典范对应分析表明,水深、总氮、总磷、铵态氮、水生植物、溶解性有机碳和沉积物中值粒径与大型底栖动物群落结构显著相关.K-优势曲线、物种多样性指数显示,从水生植被区→敞水区→富营养区,营养水平增加,底栖动物多样性逐渐降低,生物量逐渐升高.研究结果表明营养水平、底质类型以及水生植被的分布是决定太湖大型底栖动物群落结构及多样性的关键因子.  相似文献   

4.
湖北长湖水生植物多样性及群落演替   总被引:4,自引:0,他引:4  
在2011年的调查基础上,结合已有资料,研究长湖水生植物多样性、群落特征、水生植被分布现状及水生植物多样性的动态变化和群落演替规律,探讨驱动水生植物群落演替的主导因素.结果显示长湖现有水生植物95种,水生植物优势群落12个.与1985年相比,长湖水生植物无论是在优势种还是优势群落上均发生了巨大变化,从原来以沉水植物为主的优势群落逐步演替为以挺水植物+漂浮浮叶植物为优势的水生植物群落.同时水生植被分布面积急剧缩小,生物量显著下降,2011年全湖水生植被覆盖率仅为4.2%,单位面积平均生物量只有2001年的10%,全湖生物总量相比于2006年下降了88.5%.分析表明,大规模围网养殖等人为干扰活动及水体富营养化是致使长湖水生植物多样性显著下降和群落发生逆向演替的主要原因.  相似文献   

5.
太湖渔业资源现状(2009-2010年)及与水体富营养化关系浅析   总被引:6,自引:3,他引:3  
根据2009-2010年的太湖鱼类资源调查,结合历年渔业资料和水环境监测数据,分析太湖渔业资源的发展趋势和结构特征.结果表明:本次调查共采集到鱼类47种,隶属10目14科37属,原常见鱼类种类数明显减少,鲤科等定居性鱼类成为主体;同时,太湖渔业产量近年来增长迅速,渔获物中湖鲚等小型鱼类比重增加,渔业资源的单一化和小型化趋势加剧.根据湖泊水体环境特征的空间差异,对太湖东部湖区、北部湖区和湖心区3个不同类型湖区间的渔业资源特征进行比较.其中在北部湖区和湖心区,浮游食性的湖鲚成为绝对优势种,2008年其产量分别占湖区总产量的70.7%和80.4%,其他主要鱼类所占比重仅为0.2% -3.0%;而东部湖区草食性和肉食性鱼类的比例较高,鱼类结构相对合理,不同湖区间渔获物的组成差别反映出湖区鱼类组成与环境特征相适应的特点.针对太湖渔业资源与水体富营养化关系进行探讨,提出需加强渔业与湖泊环境功能之间关系的研究,重视水生植被在太湖渔业可持续发展中作用的建议.  相似文献   

6.
利用单船表层单囊拖网于2013年2 12月分别在太湖不同生态型湖区(敞水湖区和草型湖区)采集湖鲚(Coilia ectenes taihuensis)样品,同时用刺网补充大个体样品.通过胃含物鉴定,分析湖鲚饵料生物的种类及数量季节和湖区间差异,同时测定湖鲚摄食率、肥满度和食物选择系数等.结果显示,湖鲚主要食物为浮游枝角类和桡足类,此外,水生昆虫、轮虫和小型鱼虾也是湖鲚的重要食物来源.湖鲚食物组成季节变化明显,冬季以桡足类的哲水蚤(Calanus spp.)、剑水蚤(Cyclops spp.)为主,夏、秋季则以枝角类的象鼻溞(Bosmina spp.)、裸腹溞(Moina spp.)和盘肠溞(Chydorus spp.)为主.不同湖区湖鲚食物种类差异明显,草型湖区水生昆虫、鱼虾较敞水湖区多,桡足类较敞水湖区少.不同湖区间湖鲚食物数量差异明显,敞水湖区湖鲚平均食物数量为788.98±262.4 ind./尾,而草型湖区仅为298.85±71.1 ind./尾.湖鲚主动摄食大型枝角类,如僧帽溞(Daphnia cucullata)、低额溞(Simocephalus spp.)和大型溞(Daphnia magna),选择指数(Ii)介于0.59~1.00之间.小型裸腹溞(Moina spp.)也是湖鲚主动选择的食物(0.62Ii0.95),但湖鲚对桡足类选择性较低,这可能与桡足类较强的逃避能力有关.湖鲚对食物选择性的季节变化明显,如冬季回避透明薄皮溞(Leptodora kindti),而夏季则主动选择,但不同湖区湖鲚对食物的选择差别较小.本研究结果有利于从食物网层面剖析湖鲚种群增长原因,进而通过生物操纵理论对湖鲚种群进行控制,最终为形成合理的湖泊渔业结构和湖泊环境修复提供科学依据.  相似文献   

7.
1960年以来太湖水生植被演变   总被引:9,自引:5,他引:4       下载免费PDF全文
太湖的富营养化污染日益严重,针对太湖水生植被的研究工作非常重要,然而全面的太湖水生植被调查已经有将近二十年未见报道.基于2014年夏季全湖水生植被调查结果,结合历史资料,比较分析1960年以来太湖水生植被演变情况.结果表明,1960年以来,共有23种水生植物从太湖消失,其中1981、1997和2014年分别消失7、4和12种.从分布区面积来看,1960年以来太湖水生植被总体呈北部湖区水生植被消失,东北部、东部及南部湖区水生植被分布区面积持续扩张的态势,1981年全湖水生植被分布区面积占8%,到2014年已经有33.82%的水面有水生植被分布.从生物量组成来看,太湖水生植被先升后降,从1960年的10×104 t,持续上升到1988年的44.72×104 t,1997年下降到36×104 t,2014年进一步下降到29.09×104 t.但挺水植被以外的水生植被,尤其是浮叶植被的生物量一直保持上升态势.总生物量的下降与东太湖挺水植被大面积消失有关,到2014年全湖挺水植被生物量比重仅占5.15%,东太湖沼泽化问题已不复存在.从群落组成变化情况来看,苦草(Vallisneria natans)群落分布区面积锐减,马来眼子菜(Potamogeton malaianus)和荇菜(Nymphoides peltatum)分布区持续扩张.目前太湖水生植被管理面临的主要问题是北部湖区水生植被恢复和东部湖区水生植被过量生长.  相似文献   

8.
于1993-19954上对武汉东湖的布和网围受控生态系统中的植被恢复,结构优化及水质进行了初步研究。结果表明;在受控生态系统中,水生维管束植物生物量明显增加,控制养殖规模是恢复水生植被的前提,自然恢复的水生植被,结构较简单,通过选种优良植物,可优化植被结构,加速植被恢复进程;恢复水生植被时,应以沉水植物为主体。生长良好的水生维管束能使水中N,P浓度明显降低,浮游植物生物量减小;莲,芦苇,苦草,狐尾  相似文献   

9.
于2005年11月采集了大通湖及东洞庭湖区湖水和水生生物样品,并测定了水和水生生物样品中重金属(Cd、Pb、Hg、As)的含量,并对湖区生物体重金属进行了污染评价.研究结果表明,大通湖及东洞庭湖区湖水中重金属含量较小,绝大部分采样点水质都属于国家Ⅰ类水标准;水生生物体内CD、Pb含量为虾>螺>鱼,Hg的含量为鱼>螺>虾,As的含量为螺>虾>鱼;而鱼类重金属含量则为底栖鱼类>中上层鱼类,肉食性鱼类>植食性鱼类.大通湖及东洞庭湖区生物体中CD、Pb的污染指数为虾>螺>鱼,Hg的污染指数则为鱼>螺>虾,As的污染指数则为螺>虾>鱼.  相似文献   

10.
澄湖隶属苏州市,面积为45km~2,平均水深1.83m,湖内水生维管束植物甚少,主要放养的鱼类有鲢、鳙等.浮游藻类计7门94属,主要的优势种有铜色微胞藻、颗粒直链藻、四尾栅列藻等.数量和生物量的季节变化均以春季最高、秋季最低.但前者以夏季次之,而后者以冬季为次之.最后就澄湖浮游藻类秋季低产的原因及对该湖鱼产潜力进行了讨论.  相似文献   

11.
洪泽湖养殖网围拆除生态效应   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究湖泊网围养殖对湖泊生态系统的影响,2018年全年3次于洪泽湖养殖网围及主要出入湖河道开展调查,通过对比洪泽湖不同区域(河口、湖心、网围区、外围区和拆除区)水质及水生生物的空间分布特征,分析养殖网围拆除后湖泊生态系统的响应机制.结果表明,洪泽湖不同区域的水质及水生生物群落结构存在明显差异,其中养殖区水体总氮、总磷及悬浮颗粒物浓度明显低于河口和湖心,但浮游动植物密度及生物量则整体高于河口和湖心,且养殖区蓝藻、轮虫所占比重较高,这种分布差异很大程度上受外源输入及水动力条件影响.与之相对,养殖区内网围区、拆除区和外围区的水质及水生生物群落结构差异并不明显,表明养殖网围拆除后的短期时间内水质并未明显改善,且高藻类密度、低透明度的水体环境也不利于沉水植物的萌发生长与群丛恢复,有必要进一步采取合理有效的生态修复措施促进养殖迹地生态系统的恢复.  相似文献   

12.
洪泽湖水生植被   总被引:6,自引:3,他引:6  
张圣照 《湖泊科学》1992,4(1):63-70
本文对洪泽湖水生植被的种群组成、植被类型、演变动态及生物量进行了调查研究。洪泽湖水生植被面积为550km~2,占全湖总面积34.44%,年生产量约211×10~4t(湿重),即相当于4.64×10~(15)J(能量)。另外,本文还对如何调整洪泽湖植被的组成,引进优良品种,合理开发利用水生植物资源,提出了初步意见。  相似文献   

13.
基于2010-2019年洪泽湖湖体水质逐月监测数据,筛选出影响湖体水质的主要污染物指标为总氮(TN)和总磷(TP);选取洪泽湖周边25条主要入湖河流和2条出湖河流在2019年10月2020年9月的监测数据,探讨河流外源性输入对不同湖体区域氮磷的影响及其水期变化规律.结果发现:①湖体TN、TP浓度长期居高不下,年均浓度范围分别在1.39~1.86、0.080~0.171 mg/L波动.主要入湖河流TN、TP时空平均浓度(1.92~5.70和0.114~0.181 mg/L),均高于同区域湖体(1.15~1.46和0.088~0.101 mg/L),其中北部入湖河流肖河、马化河和五河与临近湖区TN、TP浓度呈现显著正相关,是影响北部湖体TN、TP浓度的主要河流;南部入湖河流维桥河和高桥河是临近湖区非极端降雨期TN、TP的主要来源.②调水工程对湖体及入湖河流TN、TP浓度分布影响显著,调水期湖体沿调水方向TP浓度逐渐上升,TN浓度则呈现先降后升的趋势,南部入湖河流维桥河和高桥河TN浓度达到水期峰值,分别为10.69和9.90 mg/L.③极端降雨期入湖河流的TN、TP浓度显著高于其它水期,由于湖体对TN、TP的富集作用不同,TP浓度呈现中间高,四周低,而TN浓度呈现沿洪水流向逐渐降低的规律.  相似文献   

14.
洪泽湖健康水生态系统构建方案探讨   总被引:6,自引:2,他引:4  
叶春  李春华  王博  张娟  张磊 《湖泊科学》2011,23(5):725-730
洪泽湖生态系统健康状态为中等,并呈逐年退化的趋势,因此开展洪泽湖健康水生态系统构建方案的研究十分必要.本文分析了洪泽湖水生态系统健康状态、水体分区特征以及存在的主要问题,根据水文条件和水生态状况的差异,将洪泽湖划分为3种具有典型特征的湖区:过水通道(从淮河入湖口至入江水道)、湿地保护区和成子湖区.针对不同湖区在水质、水...  相似文献   

15.
卞宇峥  薛滨  张风菊 《湖泊科学》2021,33(6):1844-1856
洪泽湖是淮河水系中最重要的湖泊之一,是我国的第四大淡水湖,它在防洪、灌溉、航运、跨流域调水以及水资源与水环境保护等方面发挥着重要作用.过去300年来,由于黄淮关系的演变和人类活动的影响,洪泽湖水域面积发生剧烈变化.研究湖泊水域空间变化有助于认识流域环境变化与人类活动影响.本文利用18世纪初以来的古地图、历史文献资料及1981-2016年期间的7期遥感影像数据,采用遥感和地理信息系统技术相结合的方法,分析了近300年来洪泽湖水域时空演变过程及其原因.研究结果表明:过去300年来,洪泽湖面积总体呈减少趋势,年际缩减速率为0.17%,且湖域范围总体表现为由四周向中心缩小的趋势,其中西南湖域的形态变化最为显著.具体而言,清中期以前,黄河多次夺泗入淮,洪泽湖面积变化受黄淮关系、高家堰等水利枢纽的修建以及降水等因素影响.至清末,洪泽湖面积由3078.78 km2下降至2335.73 km2,共减少743.05 km2,其空间形态也发生了剧烈变化,该时期黄河改道、降水以及人口增长导致的湖滨围垦是影响洪泽湖演变的主要原因.建国以来(1949-2016年),洪泽湖面积进一步缩小,由1757.60 km2下降至1488.43 km2,共减少了269.17 km2,其中1995-2000年间湖泊面积下降最为显著,共减少了281.43 km2,湖泊动态变化度达到2.78%,该时期自然因素对湖泊水域面积的影响减弱,而人口增长、围垦及水利工程的修建等人类活动逐渐成为影响洪泽湖演化的主导因素.  相似文献   

16.
2012—2018年洪泽湖水质时空变化与原因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
洪泽湖是南水北调东线工程的重要枢纽.为评估水环境长期变化,于2012-2018年开展逐月水质监测.结合水文气象与淮河水质水量数据,分析洪泽湖水质长期变化趋势及空间分异的驱动因素,结果显示:2012-2018年,洪泽湖总氮、总磷多年平均浓度为1.74和0.081 mg/L,分别为Ⅴ类水和Ⅳ类水,透明度均值为0.48 m,下降趋势不显著,而高锰酸盐指数、叶绿素a多年平均浓度分别为4.13和0.008 mg/L,呈显著下降趋势.在空间分布上,过水区总氮、总磷浓度显著高于成子湖、溧河洼;高锰酸盐指数、叶绿素a浓度则相对较低,透明度则是成子湖较高,溧河洼和过水区相近.3个湖区的叶绿素a浓度下降明显,但过水区的高锰酸盐指数呈上升趋势.洪泽湖与淮河水质相关性分析结果显示,洪泽湖总氮、总磷浓度与淮河水质呈强相关性,特别是过水区各个水质指标与淮河水质均有显著的相关性,而成子湖、溧河洼水质与淮河水质相关性较弱.广义可加模型(GAM)显示,过水区的总氮、总磷浓度等参数与淮河营养盐、高锰酸盐指数及悬浮物浓度变化的关系显著,成子湖和溧河洼的水质指标影响因素差异较大,成子湖、过水区的叶绿素a浓度与高锰酸盐指数相关性较强,而溧河洼的叶绿素a浓度与降水、透明度关系显著.相关性和GAM模型表明淮河对于洪泽湖,尤其是对过水区的水质影响极为明显,是洪泽湖维持较高营养水平和水质空间分异的重要原因.尽管不同湖区叶绿素a浓度下降趋势表明洪泽湖营养状态有所降低,但其氮、磷浓度仍维持在较高水平,存在富营养化风险.应持续关注淮河入湖水质变化,削减污染物输入,压缩湖泊围网、圈圩养殖规模,通过加强水污染防治和水域空间管控保障洪泽湖水环境安全.  相似文献   

17.
The survival of waterbirds depends heavily on habitat, particularly aquatic plants. For each kind of aquatic plant, there are specific water level regime requirements to meet its germination and growth. Previous studies usually focused on the use of water level management to achieve protection and restoration of aquatic plants. However, the water level regimes in many wetlands have been greatly changed and their ecological objectives usually cannot be achieved by water level management alone. Accordingly, this study combined water level management and artificial planting for waterbird habitat provision in wetlands. The Hongze Lake National Wetland Nature Reserve was taken as the research area. In this study, we considered the needs of waterbirds for nesting and foraging, and determined the aquatic plant species to be planted. According to the seasonal water level requirements of these plants, we simulated the plantable areas of different aquatic plants under different water level regimes. We then further optimized the water level regimes according to the needs of waterbirds, and determined the optimal water level management scheme. In addition, we formulated planting principles, explored the planting structure under each water level regime, so that the plant structure can better serve the waterbirds. The results showed that the current water level regime of Hongze Lake is not consistent with the growth rhythm of aquatic plants. Because of the human regulation, the water level of the wetland is high in winter and low in summer, which is contrary to the requirements of aquatic plant growth. A combination of water level regimes and plant structure management, however, could effectively expand the area for waterbird habitat. The results of this study will help wetland managers to make informed decisions about how to restore the waterbird habitat in other similar regulated wetlands.  相似文献   

18.
洪泽湖水质的时空相关性分析   总被引:20,自引:3,他引:20  
李波  濮培民  韩爱民 《湖泊科学》2002,14(3):259-266
时空相关性分析方法在生态环境空间分异笥以及湖泊湿地自然保护区建设等方面的研究上,具有重要的应用价值。将湖泊水质监测数据与空间数据结合,建立了具有时空特征的洪渗湖水质数据库。基于相关系数矩阵,利用GIS和Origin等分析软件,对洪泽湖水质的时空相关性及其时间和空间分布规律进行了研究。结果表明,洪泽湖水质存在着时空相关性,目前这种时空相关性已受到人类活动的强烈干扰,因此,建议洪泽湖湿地自然保护区应该选择在时空间相关性小,具有一定离群性的“岛屿”区域。  相似文献   

19.
湖泊作为一种蓄水单元,尤其是大型过水性湖泊,是一种典型的平原型水库,在功能上与山谷型水库具有许多相似之处,但由于其特殊的地理地形构造,使得入湖洪水过程与入库洪水过程存在着较大的差异.在防洪安全设计研究中,山谷型水库关注的多是坝址洪水,即总的入库洪水过程,而对于湖泊来说,还需要关注各个分区的入湖洪水过程对湖区洪水演进的影响.针对大型过水性湖泊入湖洪水特征,本文采用Copula函数构造了多个联合分布函数,提出了一套基于总的入湖洪水过程推导各个分区入湖洪水过程置信区间的方法.以洪泽湖为应用实例,结果表明:1)在联合重现期已知的情况下,该方法能够确定总入湖洪量与洪峰的95%置信区间;2)该方法通过径流相关性分析对入湖河道合并聚类,形成分区入湖过程,既考虑了河道间天然的水文、水力联系,又避免了联合分布函数维度过高的问题;3)在总入湖洪量已知的情况下,该方法能够确定各分区入湖洪量分配95%置信区域.该方法具有较强的统计理论基础,拓展了多变量洪水频率分析技术在水利工程实际中的应用范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号