首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 515 毫秒
1.
均匀土-桩基-结构相互作用体系的计算分析   总被引:14,自引:4,他引:14  
本文以结构-地基动力相互作用振动台模型试验为基础,结合通用有限元软件ANSYS,对均匀土-桩基-结构动力相互作用体系进行了三维有限元分析。计算中土体采用等效线性模型,利用面-面接触单元考虑土体与结构交界面的状态非线性,计算与试验得出的规律基本一致。桩基与土体间发生了脱开再闭合和滑移现象。桩身应变幅值分布呈桩顶大、桩尖小的倒三角分布,角桩的应变幅值较大,边排中桩和中桩的应变幅值较小。桩土接触压力幅值呈桩顶小、桩尖大的三角形分布。在沿振动方向的三排桩中,边排桩的滑移比中排桩的滑移量大。通过计算分析与试验的对照研究,验证了采用的计算模型与分析方法的合理性,为结构-地基相互作用的进一步研究奠定了基础。  相似文献   

2.
本文设计实现了分层土-基础-高层框架结构相互作用体系的振动台模型试验,再现了地震动激励下上部结构和基础的震害现象和砂质粉土的液化现象。通过试验,研究了相互作用体系地震动反应的主要规律:由于动力相互作用的影响,软土地基中相互作用体系的频率小于不考虑结构-地基相互作用的结构频率,而阻尼比则大于结构材料阻尼比;体系的振型曲线与刚性地基上结构的振型曲线明显不同,基础处存在平动和转动。土层传递振动的放大或减振作用与土层性质、激励大小等因素有关,砂土层一般起放大作用,砂质粉土层一般起减振隔振作用;由于土体的隔震作用,上部结构接受的振动能量较小,各层反应均较小。上部结构顶层加速度反应组成取决于基础转动刚度、平动刚度和上部结构刚度的相对大小。  相似文献   

3.
本文通过对高层建筑结构-地基动力相互作用体系和刚性地基上高层建筑结构的振动台模型试验成果的对比分析,研究了相互作用对结构动力特性和地震反应的影响。结果-地基动力相互作用使结构频率减小,阻尼增大;相互作用体系的振型曲线与刚性地基上结构的振型曲线不同,基础处存在平动和转动;在地震动作用下考虑相互作用的结构加速度、层间剪力、弯矩以及应变通常比刚性地基上的情况小,而位移则比刚性地基上的情况大。  相似文献   

4.
为研究地震荷载作用下桩基-土-核电结构的抗震性能及土结动力反应规律,对拟开展的地震模拟振动试验模型进行数值计算分析。核电工程结构上部质量大和刚度大,试验模型不同于一般的工程结构,为检验振动台试验模型设计、传感器布设方案,对试验模型进行了数值模拟。数值模拟以单端承桩为研究对象,计算了上部结构质量和刚度变化时,在脉冲荷载及基于RG1.60谱人工合成地震动作用下桩身的地震反应规律。数值模拟表明:在水平地震动作用下,桩身剪力和弯矩包络线呈"X"状分布,桩底和顶处剪力弯矩较大;上部结构质量越大,桩身的剪力与弯矩越大;上部结构的刚度越大,桩身的剪力与弯矩越小;随着上部结构质量的增大和刚度的减小,反弯点逐渐向桩顶移动。桩顶发生最大位移时所对应的桩身挠度随着上部结构质量的增加而增大并且随着上部结构刚度的增大而减小。土层分界面处,桩身内力发生突变。此外,在脉冲荷载输入下,桩身反弯点位置与输入荷载的周期有关。计算结果为振动台试验模型设计提供了理论依据。  相似文献   

5.
爆破地震作用下桩-土-结构相互作用的数值模拟   总被引:1,自引:0,他引:1  
土-结构动力相互作用是地震工程和结构抗震的重要研究内容,但目前对爆破地震作用下土-结构动力相互作用的研究较少。运用大型有限元软件ANSYS/LS-DYNA,建立了桩-土-结构相互作用体系的三维有限元模型,由桩尖输入实测爆破地震波,取得了良好的计算效果。计算结果表明:考虑桩-土-结构相互作用后,群桩基础中每个桩的位移、加速度和剪应力幅值均呈桩顶大、桩尖小的倒三角分布,桩与承台的接合部比较容易受到损坏;桩-土-结构相互作用体系在爆破地震波冲击后,还会发生几次振动,但是这些振动产生的影响要小于爆破地震产生的影响,这与实测结果相符合;爆破地震波冲击下,群桩基础中,角桩顶部表面的桩土接触压力较大,但在爆破地震波冲击后,中心桩顶部表面的桩土接触压力较大,且具有一定的周期性,直至衰减为零。  相似文献   

6.
本文研究桩基-非线性框剪结构相互作用体系的地震反应。其中上部框架和剪力墙结构分别用门型单元和四弹簧墙单元进行分析;桩基阻抗通过单桩阻抗和动力相互作用因子求得。采用频-时域混合法对解体系的动力方程,本文研究了在桩基-框剪结构相互作用体系地震反应分析中,桩基阻抗的频率相关性对结构地震反应的影响,并从土体剪切波速和地震波强度两个方面,研究了土-桩-结构相互作用对框剪结构地震反应的影响。  相似文献   

7.
《震灾防御技术》2022,17(4):643-650
利用振动台模型试验和有限元数值模拟的方法对土质地基-群桩-钢框架结构体系动力相互作用的规律和特征进行研究,并讨论了基桩长径比对于体系动力相互作用特征的影响。试验地基土体模型为均匀粉质黏土,剪切波速约为213 m/s;群桩基础由9根长2.0 m、直径0.1 m的基桩3×3对称布置;上部结构模型简化为三层钢框架结构。本文研究结果表明:土-桩-钢框架结构体系的阻尼比相较固定基础情形有所增加,输入相同地震动时其地震反应小于固定基础情形;动力相互作用体系中运动相互作用的贡献与惯性相互作用相当,不应忽略;随着基桩长径比的增大,运动相互作用增大,钢框架结构的加速度反应增大。  相似文献   

8.
为了考察桩-土接触效应对结构地震反应的影响,利用有限元软件ABAQUS建立了土-桩-框架二维有限元模型,分别采用损伤塑性模型和动力粘塑性记忆型嵌套面模型模拟混凝土和土体,利用rebar单元模拟混凝土内的钢筋,取得了较好的计算效果.计算分析中采用19条不同频谱的地震波记录,考虑了地震动强度、桩径、摩擦系数等因素,以层间位移角和桩顶最大位移为主要评价指标,揭示相互作用体系的动力响应特性.分析认为,计算结果对桩、土摩擦系数的取值不敏感;不考虑土-桩接触时,近场土体的动力反应与实际情况存在一定的误差,且上部结构和桩基的动力反应会被低估,应该考虑桩-土动力接触效应;地震动强度增加时,随着结构进入塑性状态,低估程度减小;桩径增加时,低估程度没有显著变化,虽然桩基和上部结构的反应都有所减小.  相似文献   

9.
为了分析软土地基-筏基础核电厂房结构地震反应规律和特征,利用地震模拟振动台开展了软土地基-筏基础-核电厂房动力相互作用问题的试验研究。分别进行了表面水平土体模型和表面凹陷土体模型的运动相互作用试验、地基土-筏基础-核电厂房振动台相互作用试验、核电厂房直接固定在振动台面上的刚性基底振动台试验。试验采用圆形叠层剪切模型箱,地基土模型为某工程场地的均匀粉质粘土,其剪切波速为213 m/s;核电厂房简化为3层框架剪力墙结构模型。试验输入波形为美国核电规范常用的RG1.60反应谱合成得到的人工地震动时程。振动台试验结果对比分析表明:土-结构体系中系统的振动周期和阻尼明显大于刚性基底下结构的振动周期和阻尼;相同地震作用下在土-结构动力相互作用体系中结构加速度明显小于刚性基底下的结构加速度反应;而位移明显大于刚性基底下结构的位移。本文的研究成果可为软土地基建立核岛厂房的适应研究提供参考。  相似文献   

10.
土-结构相互作用效应对结构基底地震动影响的试验研究   总被引:3,自引:0,他引:3  
利用土与结构动力相互作用振动台模型试验数据,通过各种试验工况下土层表面与基础表面加速度反应的比较,深入探讨了土与结构动力相互作用效应对高层建筑结构基底地震动的影响。从输入地震动频谱特性、输入地震动强度水平和上部结构动力特性3个方面详细分析了与SSI效应对高层建筑基底震动影响程度有关的一些因素。结果表明:SSI效应对高层建筑基底地震动的影响与输入地震波的动力特性有很大关系。在地震动的频谱成分方面,SSI效应对高层建筑基底地震动的影响主要体现为土层表面和基础表面在与输入地震动卓越频率相近处的频谱成分有较大差异;SSI效应对高层建筑基底地震动的影响程度随着输入加速度峰值水平的增加而减小;在某一特定地震波作用下,当上部结构的振动频率与地震地面运动的卓越频率相近时,SSI效应对高层建筑基底地震动的影响较为强烈。  相似文献   

11.
考虑地基土液化影响的桩基高层建筑体系地震反应分析   总被引:5,自引:2,他引:5  
本文建立了土体-结构体系地震反应分析的混合有限元法,并研究了地基土液化对地震反应的影响。本方法把土体-结构体系简化为一个完整的体系,该体系由梁(柱)单元、剪切杆单元、刚体单元、平面四边形等参单元与三角形单元、界面单元的任意组合来模拟。桩与上部结构材料视为线弹性体,土介质视为非线性材料。土的静应力-应变关系之间的非线性用邓肯一张模型来描述;土的动应力-应变关系之间的非线性和振动孔隙水压力对土的软化效  相似文献   

12.
本文设计并完成了考虑土与结构相互作用的结构减震控制大型振动台模型试验。通过对四种结构形式的对比试验,探讨了土与结构相互作用(SSI)效应对结构地震反应的影响以及调谐质量阻尼器(TMD)在刚性和柔性地基条件下对主体结构的减震效应。通过比较同一地震动作用下主体结构在刚性和柔性两种地基条件下的地震反应,可知:SSI效应具有降低和提高结构减震控制效果的双重作用,其综合效果与输入地震动的频谱特性、加速度峰值大小有关。由于SSI效应在结构地震反应中发挥着双重的作用,因而使得基于刚性地基假定下设计的TMD减震控制系统在柔性地基条件下的控制效果不太理想,甚至会出现负面效应。本文还探讨了在柔性地基条件下影响结构减震控制效果的一些因素。  相似文献   

13.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

14.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

15.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号