首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the effects of foundation embedment on the seismic behavior of fluid-elevated tank-foundation–soil system with a structural frame supporting the fluid containing tank. Six different soil types defined in the well-known seismic codes were considered. Both the sloshing effects of the fluid and soil-structure interaction of the elevated tanks located on these six different soils were included in the analyses. Fluid-elevated tank-foundation–soil systems were modeled with the finite element (FE) technique. The fluid-structure interaction was taken into account using Lagrangian fluid FE approximation implemented in the general purpose structural analysis computer program, ANSYS. FE model with viscous boundary was used to include elevated tank-foundation–soil interaction effects. The models were analyzed for the foundations with and without embedment. It was found that the tank roof displacements were affected significantly by the embedment in soft soil, however, this effect was smaller for stiff soil types. Except for soft soil types, embedment did not affect the other response parameters, such as sloshing displacement, of the systems considered in this study.  相似文献   

2.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

3.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

4.
In this paper, a study on the transient response of an elastic structure embedded in a homogeneous, isotropic and linearly elastic half-plane is presented. Transient dynamic and seismic forces are considered in the analysis. The numerical method employed is the coupled Finite-Element–Boundary-Element technique (FE–BE). The finite element method (FEM) is used for discretization of the near field and the boundary element method (BEM) is employed to model the semi-infinite far field. These two methods are coupled through equilibrium and compatibility conditions at the soil–structure interface. Effects of non-zero initial conditions due to the pre-dynamic loads and/or self-weight of the structure are included in the transient boundary element formulation. Hence, it is possible to analyse practical cases (such as dam–foundation systems) involving initial conditions due to the pre-seismic loads such as water pressure and self-weight of the dam. As an application of the proposed formulation, a gravity dam has been analysed and the results for different foundation stiffness are presented. The results of the analysis indicate the importance of including the foundation stiffness and thus the dam–foundation interaction.  相似文献   

5.
An approach is formulated for the linear analysis of three-dimensional dynamic soil–structure interaction of asymmetric buildings in the time domain, in order to evaluate the seismic response behaviour of torsionally coupled buildings. The asymmetric building is idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure is modeled as linear elastic solid elements. The contact surface between foundation mat and solid elements of soil is discretised by linear plane interface elements with zero thickness. An interface element is further developed to function between the rigid foundation and soil. As an example, the response of soil–structure interaction of torsionally coupled system under two simultaneous lateral components of El Centro 1940 earthquake records has been evaluated and the effects of base flexibility on the response behaviour of the system are verified.  相似文献   

6.
A simple and fast evaluation method of soil–structure interaction (SSI) effects of embedded structures is presented via a cone model. The impedances and the effective input motions at the bottom of an embedded foundation are evaluated by means of the cone model. Those quantities are transformed exactly to the corresponding values at the top of the foundation. The evaluated quantities are combined with the super-structure at the top of the foundation. The transfer function amplitude of the interstory drift of a single-degree-of-freedom super-structure is computed for various cases, i.e. no SSI, SSI without embedment, SSI with shallow embedment, SSI with deep embedment. Soil properties are also varied to investigate in more detail the SSI effects of embedded structures. It is found that, while the transfer function amplitude is reduced by the increase of embedment in general, the characteristics of the transfer function amplitude for a very small ground shear wave velocity and large embedment are irregular and complicated.  相似文献   

7.
设计并完成了野外大比例(1:2)土-箱形基础-框架结构相互作用系统顶部小幅激振试验.通过改变上部结构质量和基础侧限埋深,激振试验得到了同一基础不同上部结构质量与同一上部结构不同基础侧限埋深等5种工况下相互作用对系统自振频率及箱形基础阻抗函数的影响.由试验结果分析可知,当上部结构质量增加时,上部结构与土体间的相对刚度降低,相互作用对系统自振频率的影响减弱;同时由于上部结构和基础间惯性相互作用的影响,基础阻抗函数随上部结构质量的增加而增加.随着基础侧限埋深的减小,基础刚度降低,相互作用体现得更加明显.与理论结果相比,无侧限埋深基础的平动和转动基础阻抗值和理论值吻合较好.由于基础侧边回填土剪切模量小于基础底部土体剪切模量,所以同理论值相比试验得到的基础侧限埋深对基础阻抗影响系数相对较小.  相似文献   

8.
设计并完成了野外大比例(1∶2)土-箱形基础-框架结构相互作用系统顶部小幅激振试验。通过改变上部结构质量和基础侧限埋深,激振试验得到了同一基础不同上部结构质量与同一上部结构不同基础侧限埋深等5种工况下相互作用对系统自振频率及箱形基础阻抗函数的影响。由试验结果分析可知,当上部结构质量增加时,上部结构与土体间的相对刚度降低,相互作用对系统自振频率的影响减弱;同时由于上部结构和基础间惯性相互作用的影响,基础阻抗函数随上部结构质量的增加而增加。随着基础侧限埋深的减小,基础刚度降低,相互作用体现得更加明显。与理论结果相比,无侧限埋深基础的平动和转动基础阻抗值和理论值吻合较好。由于基础侧边回填土剪切模量小于基础底部土体剪切模量,所以同理论值相比试验得到的基础侧限埋深对基础阻抗影响系数相对较小。  相似文献   

9.
A simple theoretical model for soil–structure interaction in water saturated poroelastic soils is presented, developed to explore if the apparent building–foundation–soil system frequency changes due to water saturation. The model consists of a shear wall supported by a rigid circular foundation embedded in a homogenous, isotropic poroelastic half-space, fully saturated by a compressible and inviscid fluid, and excited by in-plane wave motion. The motion in the soil is governed by Biot's theory of wave propagation in fluid saturated porous media. Helmholtz decomposition and wave function expansion of the two P-wave and the S-wave potentials is used to represent the motion in the soil. The boundary conditions along the contact surface between the soil and the foundation are perfect bond (i.e. welded contact) for the skeleton, and either drained or undrained hydraulic condition for the fluid (i.e. pervious or impervious foundation). For the purpose of this exploratory analysis, the zero stress condition at the free surface is relaxed in the derivation of the foundation stiffness matrix, which enables a closed form solution. The implications of this assumption are discussed, based on published comparisons for the elastic case. Also, a closed form representation is derived for the foundation driving forces for incident plane (fast) P-wave or SV wave. Numerical results and comparison with the full-scale measurements are presented in the companion paper, published in this issue.  相似文献   

10.
A general procedure is presented to study the dynamic soil–structure interaction effects on the response of long-span suspension and cable-stayed bridges subjected to spatially varying ground motion at the supporting foundations. The foundation system is represented by multiple embedded cassion foundations and the frequency-dependent impedance matrix for the multiple foundations system takes into account also the cross-interaction among adjacent foundations through the soil. To illustrate the potential implementation of the analysis, a numerical example is presented in which the dynamic response of the Vincent–Thomas suspension bridge (Los Angeles, CA) subjected to the 1987 Whittier earthquake is investigated. Although both kinematic and inertial effects are included in the general procedure, only the kinematic effects of the soil–structure interaction are considered in the analysis of the test case. The results show the importance of the kinematic soil–foundation interaction on the structural response. These effects are related to the type, i.e. SH-, SV-, P- or Rayleigh waves and to the inclination of the seismic wave excitation. Moreover, rocking components of the foundation motion are emphasized by the embedment of the foundation system and greatly alter the structural response.  相似文献   

11.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this study is the evaluation of dynamic behavior induced by seismic activity on a silo system, containing bulk material, with a soil foundation. The interaction effects between the silo and bulk material, as well as the effects produced between the foundation of the silo and the soil, were taken into account. Proposed simplified approximation, as well as the finite model, were used for analysis. The results, from the presented approximation, were compared with a more rigorous obtainment method. Initially, the produced simplified approximation, with elastic material assumption for the grain, could determine the pressures on the dynamic material along with displacements along the height of the silo wall and base shear force, etc., with remarkable precision. Some comparisons, via a change of soil and/or foundation conditions, were also made regarding the seismic pressure of the dynamic material pressure, displacement and base shear forces for both squat and slender silos. Comparing the analytical predictions to results from the numerical simulations produced good results. It can be concluded that the model can be used effectively to perform a broad suite of parametric studies, not only at the design stage but also as a reliable tool for predicting system behavior under the limit state of the system. The results and comprehensive analysis show that displacement effects and base shear forces generally decreased when soil was softer; however, soil structure interaction (SSI) did not have any considerable effects on squat silos and therefore need not be taken into practice.  相似文献   

13.
The seismic performance of geotechnical works is significantly affected by ground displacement. In particular, soil–structure interaction and effects of liquefaction play major roles and pose difficult problems for engineers. An International Standard, ISO23469, is being developed for addressing these issues in a systematic manner within a consistent framework. The objective of this paper is to give an overview of this International Standard.In this International Standard, the seismic actions are determined through two stages. The first stage determines basic seismic action variables, including the earthquake ground motion at the site, the potential for earthquake-associated phenomena such as liquefaction and induced lateral ground displacement. These basic variables are used, in the second stage, for specifying the seismic actions for designing geotechnical works. In the second stage, the soil–structure interaction plays a major role. Types of analyses are classified based on a combination of static/dynamic analyses and the procedure for soil–structure interaction classified as follows:
– simplified: soil–structure interaction of a global system is modeled as an action on a substructure;
– detailed: soil–structure interaction of a global system is modeled as a coupled system.
Keywords: Design; Geotechnical works; Liquefaction; International Standard; Seismic actions; Seismic hazard analysis  相似文献   

14.
A numerical solution for evaluating the effects of foundation embedment on the effective period and damping and the response of soil–structure systems is presented. A simple system similar to that used in practice to account for inertial interaction effects is investigated, with the inclusion of kinematic interaction effects for the important special case of vertically incident shear waves. The effective period and damping are obtained by establishing an equivalence between the interacting system excited by the foundation input motion and a replacement oscillator excited by the free-field ground motion. In this way, the use of standard free-field response spectra applicable to the effective period and damping of the system is permitted. Also, an approximate solution for total soil–structure interaction is presented, which indicates that the system period is insensitive to kinematic interaction and the system damping may be expressed as that for inertial interaction but modified by a factor due to kinematic interaction. Results involving both kinematic and inertial effects are compared with those obtained for no soil–structure interaction and inertial interaction only. The more important parameters involved are identified and their influences are examined over practical ranges of interest. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with the dynamic response of buildings due to traffic induced wave fields. The response of a two-storey single family dwelling due to the passage of a two-axle truck on a traffic plateau is computed with a model that fully accounts for the dynamic interaction between the soil and the structure. The results of three cases where the structure is founded on a slab foundation, a strip foundation and a box foundation are calculated and a comprehensive analysis of the dynamic structural response is performed. A methodology is also proposed to calculate the structural response, neglecting the effects of dynamic soil–structure interaction. A comparison with the results of calculations where dynamic soil–structure interaction is accounted for shows that a good approximation is obtained in the case of a rigid structure resting on a soft soil.  相似文献   

16.
In-plane foundation-soil interaction for embedded circular foundations   总被引:2,自引:0,他引:2  
Foundation soil interaction is studied using an analytical two-dimensional model, for circular foundations embedded in a homogeneous elastic half-space and for incident plane P- and SV- and for surface Rayleigh waves. The scattered waves are expanded in complete series of cyclindrical wave functions. A detailed analysis is presented of the foundation response to unit amplitude incident waves as a function of the type of incident waves and angle of incidence, the depth of the embedment and the foundation mass per unit length.It is shown that free-field translations and point rotation approximate well the foundation input motion only for very long incident waves. For shorter incident waves, those in general overestimate the foundation input motion. Neglecting the rotation of the foundation input motion (which is usually done in practice) may eliminate a major contribution to the base excitation of buildings and may cause nonconservative estimates of the forces in these buildings. Incident waves appear as ‘longer’ to a shallow foundation than to a deeper foundation. Therefore, deeper foundations are more effective in reflecting and scattering the short incident waves.  相似文献   

17.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A three-dimensional soil–structure–liquid interaction problem is numerically simulated in order to analyze the dynamic behavior of a base-isolated liquid storage tank subjected to seismic ground motion. A dynamic analysis of a liquid storage tank is carried out using a hybrid formulation, which combines the finite shell elements for structures and the boundary elements for liquid and soil. The system is composed of three parts: the liquid–structure interaction part, the soil–foundation interaction part, and the base-isolation part. In the liquid–structure interaction part, the tank structure is modeled using the finite elements and the liquid is modeled using the internal boundary elements, which satisfy the free surface boundary condition. In the soil–foundation interaction part, the foundation is modeled using the finite elements and the half-space soil media are modeled using the external boundary elements, which satisfy the radiation condition in the infinite domain. Finally, above two parts are connected with the base-isolation system to solve the system's behavior. Numerical examples are presented to demonstrate the accuracy of the developed method, and an earthquake response analysis is carried out to demonstrate the applicability of the developed technique. The properties of a real LNG tank located in the west coast of Korea are used. The effects of the ground and the base-isolation system on the behavior of the tank are analyzed.  相似文献   

19.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   

20.
Some structures may be very massive and may have to be located on relatively soft soil. In such cases, the soil adjacent to the structure behaves in a non-linear fashion and affects the response of the structure to the dynamic loading. An approximate hybrid approach to analyse soil–structure systems accounting for soil non-linearities has been developed in this paper. The approach combines the consistent infinitesimal finite-element cell method (CIFECM) and the finite-element method (FEM). The CIFECM is employed to model the non-linear (near-field) zone of the soil supporting the structure as a series of bounded media. The material properties of the bounded media are selected so that they are compatible with the average effective strains over the whole bounded medium during the excitation. The linear zone of soil away from the foundation, the far-field, is modelled as an unbounded medium using the CIFECM for unbounded media. The structure itself is represented by the FEM. The proposed method is used to model the dynamic response of a one-mass structure and a TV-tower supported on a homogenous stratum and excited by an earthquake. It was found that the secondary soil non-linearity might increase or decrease the base forces of tall slender structures depending on the type of structure, frequency content of the input motion and the dynamic properties of the near-field soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号