首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 101 毫秒
1.
It is common to use idealised materials to study the dynamics of granular transport in fluid flows, but the impact of this choice upon sediment behaviour has not been extensively explored. To tackle this research gap, two experiments were undertaken to explore the influence of a finer grain input to a channelized coarser granular flow driven by a shallow fluid flow. The first set of runs was undertaken using spherical glass beads, and the second set with natural fluvial sediment. The transport system approximates a narrow slice through the bedload at the bottom of a river. In the runs with natural grains, the infiltration of fine sediment into the bed was similar to the spherical glass beads, but with reduced infiltration capacity. We ascribe this behaviour to irregular and variable pore shapes and sizes in the natural material. The behaviour of the bedload in the natural material runs matched that of the bead runs only when the feed contained a high content of fines. When the feed contained a low content of fines the transport of natural grains was more complex, including the emergence of migrating collections of grains. However, the overall changes in bed and water slope due to the finer grain input were comparable in both sets of experiments. We conclude that artificial, idealised materials qualitatively represent sedimentary phenomena, but that quantitative differences in the outcomes must be expected. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
Depth profiles of particle streamwise velocity, concentration and bedload sediment transport rate were measured in a turbulent and supercritical water flow. One‐size 6 mm diameter spherical glass beads were transported at equilibrium in a two‐dimensional 10% steep channel with a mobile bed. Flows were filmed from the side by a high‐speed camera. Particle tracking algorithms made it possible to determine the position, velocity and trajectory of a very large number of particles. Approximately half of the sediment transport rate was composed by rolling grains, and the other half by saltation. This revealed a complex structure, with several concentration and flux peaks due to rolling, and one peak due to saltation. With an increase of the sediment transport rate, the depth structure remained the same at the water/granular interface, with peak value increases but with no shift in elevations. The saltation region expanded towards higher elevations with an increase of the particle velocity commensurate to the water velocity. The proportion of the sediment transport rate in saltation did not vary significantly. The particle streamwise velocity profiles exhibited three segments: an exponential decay in the bed, a linear increase where rolling and saltation co‐existed, and above this, a logarithmic‐like shape due to saltating particles. These results are comparable to profiles measured and modelled in dry granular free surface flows and in more intense bedload such as sheet flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Owing to experimental difficulties, the transport stage at which collisions between moving ‘bedload’ grains might become significant has never been investigated, yet the existence or otherwise of such collisions is of some importance in the understanding of the mechanics of sediment transport, in particular the theory developed by Bagnold. Application of the basic principles of gaseous kinetic theory to ‘bedload’ grains moving in saltant trajectories and the adoption of a ‘characteristic’ saltation path leads to the prediction that grain-grain collisions should dominate in the transport of coarse sands over plane beds in water flows above a transport stage of about 2, i.e. when the mean boundary fluid shear stress exceeds the critical boundary shear stress for grain motion by about 4 times. Above this stage interrupted saltations should always occur, with the ‘bedload’ grains held above the stationary bed by a combination of fluid and solid momentum transfer mechanisms. A classification of the types of grain motions is given and evidence is presented for the existence of an upward decrease in grain collision frequency and of grain concentration at the top of the ‘bedload’ zone.  相似文献   

4.
Experiments were undertaken to study the nature of granular interaction in running water by examining the influence of fine grain inputs to a coarser sediment bed with a mobile surface. Video recordings of grain sorting by both kinetic sieving and spontaneous percolation are used to diagnose the critical processes controlling the overall bed response. Kinetic sieving takes place in the mobile bed surface, with the finer sediment moving to the bottom of the bedload transport layer at the interface with the underlying quasi‐static coarse bed. We show that the behavior at this interface dictates how a channel responds to a fine sediment input. If, by spontaneous percolation, the fine sediment is able to infiltrate into the underlying quasi‐static bed, the total transport increases and the channel degrades. However, if the fine sediment input rate exceeds the transport capacity or is geometrically unable to infiltrate into the underlying bed, it forms a quasi‐static layer underneath the transport layer that inhibits entrainment from the underlying bed, resulting in aggradation and an increase in bed slope. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The plants and animals that inhabit river channels may act as zoogeomorphic agents affecting the nature and rates of sediment recruitment, transport and deposition. The impact of benthic‐feeding fish, which disturb bed material sediments during their search for food, has received very little attention, even though benthic feeding species are widespread in rivers and may collectively expend significant amounts of energy foraging across the bed. An ex situ experiment was conducted to investigate the impact of a benthic feeding fish (Barbel Barbus barbus) on particle displacements, bed sediment structures, gravel entrainment and transport fluxes. In a laboratory flume changes in bed surface topography were measured and grain displacements examined when an imbricated, water‐worked bed of 5.6 to 16 mm gravels was exposed to feeding juvenile Barbel (on average, 0.195 m in length). Grain entrainment rates and bedload fluxes were measured under a moderate transport regime for substrates that had been exposed to feeding fish and control substrates which had not. On average, approximately 37% of the substrate, by area, was modified by foraging fish during a four‐hour treatment period, resulting in increased microtopographic roughness and reduced particle imbrication. Structural changes by fish corresponded with an average increase in bedload flux of 60% under entrainment flows, whilst on average the total number of grains transported during the entrainment phase was 82% higher from substrates that had been disturbed by Barbel. Together, these results indicate that by increasing surface microtopography and undoing the naturally stable structures produced by water working, foraging can increase the mobility of gravel‐bed materials. An interesting implication of this result is that by increasing the quantity of available, transportable sediment and lowering entrainment thresholds, benthic feeding might affect bedload fluxes in gravel‐bed rivers. The evidence presented here is sufficient to suggest that further investigation of this possibility is warranted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We report bedload data and acoustic impulse measurements due to particle impact from the Pitzbach in Austria. Impulse counts can be viewed as a measure of the energy delivered to the bed by moving particles. Impulse counts show a large scatter even for the same discharge and bedload supply. This scatter is due to varying grain size distribution, grain shape, mode of transport of the sediment particles and spatial and temporal distribution of the sediment load. The mean impulse count at given hydraulic conditions may increase or decrease with increasing sediment supply, suggesting that both tools and cover effects are active on the channel bed. Dependent on the local balance between sediment supply and transport capacity, either effect may be dominant at different locations along the cross‐section at the same time. Furthermore, the same bed location may respond to increasing sediment supply as tools‐dominated at some discharges and cover‐dominated at other discharges. Our observations may have implications for modelling of bedrock erosion in landscape evolution models and of bedrock channel morphology. Erosion models that do not incorporate both tools and cover effects are not sufficient to describe observations. Furthermore, a local erosion law cannot in general be used to describe erosion averaged over the channel cross‐section. The changing balance between sediment supply and transport capacity with increasing discharge highlights that a single representative discharge is not sufficient to capture the full erosion dynamics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The composition, grain‐size, and flux of stream sediment evolve downstream in response to variations in basin‐scale sediment delivery, channel network structure, and diminution during transport. Here, we document downstream changes in lithology and grain size within two adjacent ~300 km2 catchments in the northern Rocky Mountains, USA, which drain differing mixtures of soft and resistant rock types, and where measured sediment yields differ two‐fold. We use a simple erosion–abrasion mass balance model to predict the downstream evolution of sediment flux and composition using a Monte Carlo approach constrained by measured sediment flux. Results show that the downstream evolution of the bed sediment composition is predictably related to changes in underlying geology, influencing the proportion of sediment carried as bedload or suspended load. In the Big Wood basin, particle abrasion reduces the proportion of fine‐grained sedimentary and volcanic rocks, depressing bedload in favor of suspended load. Reduced bedload transport leads to stronger bed armoring, and coarse granitic rocks are concentrated in the stream bed. By contrast, in the North Fork Big Lost basin, bedload yields are three times higher, the stream bed is less armored, and bed sediment becomes dominated by durable quartzitic sandstones. For both basins, the geology‐based mass balance model can reproduce within ~5% root‐mean‐square error the composition of the bed substrate using realistic erosion and abrasion parameters. As bed sediment evolves downstream, bedload fluxes increase and decrease as a function of the abrasion parameter and the frequency and size of tributary junctions, while suspended load increases steadily. Variable erosion and abrasion rates produce conditions of variable bed‐material transport rates that are sensitive to the distribution of lithologies and channel network structure, and, provided sufficient diversity in bedrock geology, measurements of bed sediment composition allow for an assessment of sediment source areas and yield using a simple modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
There is growing acknowledgement of the interaction between animals and the river bed on which they live and the implications of biological activity for geomorphic processes. It has been observed that signal crayfish (Pacifastacus leniusculus) disturb gravel substrates, potentially promoting sediment transport and impacting ecological communities. However, the mechanisms involved and the extent of their impact remain poorly understood, especially in relation to other processes that affect grain mobility in gravel‐bed rivers. A series of flume experiments, using loose and water‐worked gravel beds of narrowly graded grain sizes that were exposed to 6 h of crayfish activity under low‐velocity flows, showed a substantial increase in the number of grains entrained by subsequent higher‐velocity flows when compared with control runs in which crayfish were never introduced. Crayfish alter the topography of their substrate by constructing pits and mounds, which affect grain protrusion. When walking and foraging, they also alter gravel fabric by reorienting and changing the friction angle of surface grains. In water‐worked surfaces, this fabric rearrangement is shown to lead to a statistically significant, partial reversal of the structuring that had been achieved by antecedent flow. For these previously water‐worked surfaces, the increase in entrainment arising from disturbance by crayfish was statistically significant, with grain transport nearly twice as great. This suggests that signal crayfish, an increasingly widespread invasive species in temperate latitudes beyond their native NW North America, have the potential to enhance coarse‐grained bedload flux by altering the surface structure of gravel river beds and reducing the stability of surface grains. This study illustrates further the importance of acknowledging the impact of mobile organisms in conditioning the river bed when assessing sediment entrainment mechanics in the context of predicting bedload flux. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In bedload transport modelling, it is usually presumed that transported material is fed by the bed itself. This may not be true in some mountain streams where the bed can be very coarse and immobile for the majority of common floods, whereas a finer material, supplied by bed‐external sources, is efficiently transported during floods, with marginal morphological activities. This transport mode was introduced in an earlier paper as ‘travelling bedload’. It could be considered an extension of the washload concept of suspension, applied to bedload transport in high‐energy, heavily armoured streams. Since this fine material is poorly represented in the bed surface, standard surface‐based approaches are likely to strongly underestimate the true transport in such streams. This paper proposes a simple method to account for travelling bedload in bedload transport estimations. The method is tested on published datasets and on a typical Alpine stream, the Roize (Voreppe, France). The results, particularly on active streams that experience greater transport than expected from the grain sizes of their bed material, reinforce the necessity of accounting for the ‘travelling bedload concept’ in bedload computation. The method relevance is discussed regarding varying flood magnitudes, geomorphic responses and eventual anthropic origin of the ‘travelling bedload’ phenomena. To conclude, this paper considers how to compute bedload transport for a wide range of situations, ranging from sediment‐starved cases to the general mobile bed alluvial case, including the intermediate situation of external source supply on armoured bed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号