首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The present work focuses on the performance of Fenton, sono‐Fenton, and sono‐photo‐Fenton processes for the oxidation of phenol present in aqueous solution. The effects of H2O2 concentration, Fe2+ concentration, pH, and initial phenol concentration on the oxidation of phenol were studied. The optimum Fe2+ and H2O2 concentrations for the Fenton process were 45 and 800 mg/L, respectively. For the sono‐Fenton process, the optimum Fe2+ and H2O2 concentrations were 30 and 800 mg/L, respectively. The optimal conditions for the sono‐photo‐Fenton process were found to be 20 mg/L of Fe2+ and 700 mg/L of H2O2. The optimum pH was found to be 3 for the processes investigated in the present study. The analysis of results showed that the sono‐photo‐Fenton method reduced the Fe2+ concentration by 30–50% and the H2O2 concentration by 12.5%. It was found that the sono‐photo‐Fenton technique showed better performance than the Fenton and sono‐Fenton processes for the oxidation of phenol. A lumped kinetic model was used to predict the chemical oxygen demand reduction and the model was found to fit the data.  相似文献   

2.
The degradation reactions of two monoazo pigments, namely, Red 53:1 and Red 48:2, by Fenton, photo‐Fenton and UV/H2O2 systems have been studied. The efficiencies of the Fenton reactions increased with temperature, but the formation of solid agglomerates was observed when the reactions were carried out above 50°C indicating a coagulant action of Fe+2 or Fe+3. Photo‐Fenton reactions irradiated by sunlight presented the best rate constants for cleavage of the azo bond and the naphthalene rings. The UV/H2O2 system exhibited the highest efficiency with respect to the consumption of H2O2. The presence of a carbonyl group in the ortho position of the naphthol ring hampered the oxidation of pigment Red 48:2 by hydroxyl radicals. This finding may be explained in terms of the acceptor character of the COOH group, and suggests the formation of a complex containing two six‐membered rings between Fe+3 and the pigment molecule.  相似文献   

3.
In the present study, the effects of initial COD (chemical oxygen demand), initial pH, Fe2+/H2O2 molar ratio and UV contact time on COD removal from medium density fiberboard (MDF) wastewater using photo‐assisted Fenton oxidation treatment were investigated. In order to optimize the removal efficiency, batch operations were carried out. The influence of the aforementioned parameters on COD removal efficiency was studied using response surface methodology (RSM). The optimal conditions for maximum COD removal efficiency from MDF wastewater under experimental conditions were obtained at initial COD of 4000 mg/L, Fe2+/H2O2 molar ratio of 0.11, initial solution pH of 6.5 and UV contact time of 70 min. The obtained results for maximum COD removal efficiency of 96% revealed that photo‐assisted Fenton oxidation is very effective for treating MDF wastewater.  相似文献   

4.
The present work demonstrates the applicability of ferrites as photo‐Fenton catalysts for deterioration of different phenolic derivatives. To analyze optimal reaction conditions, experiments are performed with four magnetic spinel ferrites MFe2O4 (M = Co, Cu, Ni, and Zn) and two inorganic oxidants, i.e., hydrogen peroxide (HP) and potassium peroxymonosulfate (PMS). The reactions are performed using p‐nitrophenol as phenolic probe. CuFe2O4 and CoFe2O4 possessed excellent ability to activate HP and PMS, respectively, among all four synthesized catalysts. A noteworthy aspect of two oxidizing agents is that the concentration of PMS used during the reaction is four times less than HP. Further, the broad pH activity of PMS provides a significant advantage over HP. The optimal reaction conditions, when HP is the oxidant in the photo‐Fenton degradation, are 0.50 g L?1 MFe2O4, pH 2.5, and 8.8 mM HP. Although PMS is active in a wide pH range (2–10), adequate reaction conditions are 0.50 g L?1 MFe2O4, natural pH, and 2.2 mM PMS. The photo‐Fenton activity of ferrites is extended to the degradation of different nitro‐ and chloro‐analogs of phenol (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol, 2,4,6‐trinitrophenol, 2‐chlorophenol, 3‐chlorophenol, 4‐chlorophenol, 2,4‐dichlorophenol) with only two ferrites (CuFe2O4 and CoFe2O4). A comparative study is performed with the two oxidants (HP and PMS) with positive results. Finally, stability and reusability of magnetic ferrites as catalysts are also studied to prove their use in phenolic solution treatment.  相似文献   

5.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

6.
Textile effluent from dyeing process has been a serious environmental threat for years. This study was intended to evaluate the performance of Fenton’s process for the removal of chemical oxygen demand (COD), colour and turbidity. Experiments were conducted by laboratory-scale reactors fed with cotton dyeing effluent. The Fenton process employs ferrous ions and hydrogen peroxide H2O2 under acidic pH conditions. The experimental variables studied include doses of iron salts and hydrogen peroxide, oxidation time, pH for oxidation and coagulation. The COD, color and turbidity removal reached a maximum of 97.2, 96.8 and 84.8% respectively at a reaction time of 20 min under optimum doses of H2O2 and Fe2+. Hydrogen peroxide dose ranging from 0.5 to 2.0 mL/500 mL and FeSO4 · 7H2O in the range of 0.5–4.0 gm/500 mL were selected to be examined at different reaction times between 10 and 30 min. Optimum dose of hydrogen peroxide and ferrous sulphate were 2.0 mL and 1.0 gm respectively for 500 mL of sample. In this study optimized pH 4.0 and 6.0 was found effective for oxidation and coagulation respectively.  相似文献   

7.
This experimental research deals with using steel scrap as a heterogeneous catalyst. This catalyzes the oxidation reaction of real textile dye wastewater based on a modified solar photo‐Fenton oxidation process. Morphologic analysis and mapping of the elementary composition of the steel scrap have been carried out by scanning electron microscopy. The effects of concentration of H2O2, the pH of the solution and the catalyst loading on the degradation of textile dye wastewater are elucidated. Kinetic studies have been performed for the decolorization of wastewater under optimum conditions. It could be concluded that the steel scrap is a potential substitute for ferrous salts as a catalyst for the solar photo‐Fenton reaction.  相似文献   

8.
Catechol is one of the most abundant phenolic components of olive mill wastewaters. In this article, the mineralization of this compound in synthetic aqueous solutions by the Fenton and photo‐Fenton processes is studied. It has been found that for 1.44 mM catechol, the total organic carbon of solutions is reduced about 94.4% at best after 60 min of Fenton treatment at optimized conditions of pH 3.0, 0.2 mM Fe2+, 7.09 mM H2O2, and 25°C. A faster and overall mineralization is attained by applying photo‐Fenton with UVA irradiation. o‐Benzoquinone, 1,2,3‐trihydroxybenzene and 1,2,4‐trihydroxybenzene were identified by GC–MS as primary quinonic and polyhydroxylated derivatives. Small amounts of generated carboxylic acids like muconic, maleic, malonic, acetic, oxalic, and formic acids were detected by ion‐exclusion chromatography. The Fe(III) complexes of these acids persist in the medium under Fenton conditions, while their photolysis by UVA light and that of other by‐products account for by the faster degradation and total mineralization achieved in the photo‐Fenton process. A reaction sequence for catechol mineralization by Fenton and photo‐Fenton involving all intermediates detected is proposed.  相似文献   

9.
In this work, the treatment of photographic processing wastewaters (PPW) by electro‐Fenton process has been investigated. The Influence of operating conditions on kinetics and efficiency of electro‐Fenton process has been evaluated using carbon felt cathode and platinium (Pt) or boron‐doped diamond (BDD) anode. The results of electro‐Fenton treatment of PPW have shown that nearly complete removal of total phenols was obtained for all combinations with pseudo‐first rate constants of 0.07, 0.012, and 0.018/min for carbon felt/Pt, carbon felt/BDD and Pt/BDD cathode/anode combinations, respectively. The combination of carbon felt cathode with BDD anode achieved the highest total organic carbon (TOC) removal of 90%, while it did not exeed 40% for carbon felt/Pt combination. Increasing current intensity and Fe2+ dose enhances the efficiency of electro‐Fenton process. However, increasing pH decreases TOC removal during the treatment of PPW by electro‐Fenton process. The highest efficiency of electro‐Fenton process using BDD anode can be explained by the contribution of direct and indirect oxidation routes in the degradation mechanism of organics including (i) oxidation via hydroxyl radicals generated from the catalytic decomposition of H2O2 and from water discharge on BDD anode, (ii) direct oxidation of certain organic compounds on BDD anode, and (iii) mediated oxidation with inorganic oxidants electrogenerated from anodic oxidation of supporting salts.  相似文献   

10.
Fenton process was investigated for the purpose of biological sludge disintegration. The Box–Wilson experimental design was employed to evaluate the effects of major process variables (Fe(II) and H2O2 concentrations) on both disintegration and dewatering performance of sludge. Results showed that 4 g Fe(II)/kg total solids (TSs) and 60 g H2O2/kg TS are efficient for floc disintegration. Fenton pre‐treatment enhanced the biodegradability of sludge. For 4 g Fe(II)/kg TS and 60 g H2O2/kg TS, 19.4% higher methane production was achieved compared to raw sludge in biochemical methane potential assay. Fenton pre‐treatment resulted in the release of organic sludge components into the liquid phase. For 4 g Fe(II)/kg TS and 60 g H2O2/kg TS, dissolved organic carbon and total nitrogen in sludge's supernatant increased by 75.74 and 60.60%, respectively. Fenton pre‐treatment enhanced the filterability of sludge and it can be applied for conditioning purpose before mechanical dewatering units.  相似文献   

11.
The removal of chemical oxygen demand (COD) and phenol from olive oil mill wastewaters (OOMW) was investigated experimentally by using conventional Fenton (CFP) and Fenton type processes (FTP) with zero valent iron (ZVI). Different operational parameters such as initial pH, Fe2+, Fe0, and H2O2 concentrations were examined. Kinetic studies in terms of COD and phenol removals for both CFP and FTP were performed. The original pH value (4.6) of OOMW for CFP was found as the optimum pH. The determined optimum conditions are [Fe2+] = 1500 mg L?1, [H2O2] = 1750 mg L?1, and pH = 4.6 for CFP; [Fe0] = 2000 mg L?1, [H2O2] = 2000 mg L?1, and pH = 3 for FTP. 82.4% COD and 62% phenol removals were performed under the optimum conditions by CFP, while 82% COD and 63.4% phenol were removed by FTP. According to the results of kinetic studies, it was observed that COD and phenol were removed by FTP more rapidly, compared to CFP. Consequently, it was determined that both CFP and FTP were effective processes for the pretreatment of OOMW.  相似文献   

12.
The amination water (AW) effluent stream from the industrial production of the trifluraline herbicide was submitted to an oxidation‐coagulation treatment with potassium ferrate, combined with advanced oxidation processes. The experimental results obtained by analysis of variance (ANOVA) for the oxidation‐coagulation‐Fenton process, evaluating the variables pH (A), Fe(VI) concentration (B), and H2O2 concentration (C), demonstrated that the regression equation resulting from the Response Surface Methodology (RSM) experimental design, for the quadratic model, was ηAbs (%) = 36.9– 21.58A + 8.37A2 + 1.36B + 0.92B2 + 1.08C + 1.52C2 + 1.27AB – 1.34AC + 1.33BC. The maximum absorptiometric color reduction occurred at pH 3, with corresponding maximum amounts of iron and hydrogen peroxide. The absorptiometric color and COD reduction were 96% and 57%, respectively. For the oxidation‐coagulation‐photo‐Fenton process, the analyzed variables were pH (A), Fe(VI) concentration (B), H2O2 concentration (C), and temperature (D). The regression equation resulting from the quadratic model was ηAbs (%) = 38.3 – 20.2A + 8.12A2 – 0.27B + 3.73B2 + 0.3C + 3.6C2 + 1.67D + 3.1D2 + 1.72AB + 0.51AC – 1.82AD + 0.74BC – 1.11BD + 0.03CD. The ANOVA response showed that the highest absorptiometric color reduction occurred at pH 3, with respective maximum amounts of iron and hydrogen peroxide at 60°C. The maximum efficiencies achieved by the proposed treatment process for the trifluraline effluent stream were 95% and 85%, for absorptiometric color and COD reduction, respectively.  相似文献   

13.
This study attempts to explore the possibility of treating dye solutions containing Disperse Yellow 119 and Disperse Red 167 by Fenton and Fenton under solar‐light oxidation processes. Experiments were conducted to examine the effects of various operating conditions on the performance of the treatment systems. The Fenton results showed that 98.6% spectral absorption coefficient (SAC) and 90.8% chemical oxygen demand (COD) removals were proved at pH 3, 50 mg/L Fe2+, and 75 mg/L H2O2, 15 min oxidation time for Disperse Yellow 119. After 40 min solar irradiation time during Fenton process the SAC removal was 99.1%. COD reduction of about 98.3% was observed at the same time. It was also obtained as 97.8% SAC and 97.7% COD removal with pH 3, 75 mg/L Fe2+, 100 mg/L H2O2, and 25 min oxidation time for Disperse Red 167 at this optimum conditions. For Disperse Red 167 during Fenton under solar light process, after 40 min of solar irradiation time the SAC and COD reduction were obtained 99.3 and 98.4%, respectively.  相似文献   

14.
A simple, low cost, highly effective, and useful Fenton oxidation treatment of synthetic dye bath waste with pickling liquor as a source of iron (Fe2+ catalyst) is reported. Optimizations of contact time, Fe2+ and H2O2 doses are carried out. Oxidative de‐colorization and degradation of Reactive Blue 4 and Reactive Orange 16 was measured in terms of decrease in absorbance at their wavelength of maximum absorption (RB4, 599 nm; and RO16, 493 nm) and also as reduction in chemical oxygen demand (COD). Approximately, 62% COD was removed in 2 h at optimized doses of Fe2+ (8.95 mM) and H2O2 (61.8 mM) by using pickling waste as a source of Fe2+ catalyst. Similar performance efficiency was observed when neat FeSO4 was used as a source of Fe2+, indicating that pickling liquor can be a low cost source of Fe2+ to treat synthetic dye bath waste by Fenton method.  相似文献   

15.
Decolorization of C.I. Basic Blue 3 (BB3) by oxalate catalyzed photoelectro‐Fenton process based on carbon nanotube‐polytetrafluoroethylene (CNT‐PTFE) electrode as cathode under visible light was studied. A comparison of electro‐Fenton, photoelectro‐Fenton, and photoelectro‐Fenton/oxalate processes for decolorization of the solution containing BB3 has been performed. The results showed that color removal follows the decreasing order: photoelectro‐Fenton/oxalate > photoelectro‐Fenton > electro‐Fenton. Response surface methodology (RSM) was employed to assess individual and interactive effects of the four main independent parameters on the decolorization efficiency. A central composite design (CCD) was employed for optimization of photoelectro‐Fenton/oxalate treatment of BB3. The analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.958) and satisfactory prediction second‐order regression. This study clearly showed that RSM was one of the suitable methods to optimize the operating conditions.  相似文献   

16.
Flocculation and sedimentation of particles are essential to many environmental and industrial processes. Solid–liquid separation in olive‐oil mill wastewater treatment by means of Fenton system is the key to work continuously and maintain a constant outlet flow of clarified water at the end of the oxidation process. Natural sedimentation is not capable to eliminate the sludge formed. The efficiency of flocculation operation using different flocculants as QG‐2001, QG‐2002, DQGALFLOC‐130H, and Nalco‐77171 was investigated. The optimum dosage of each flocculant, 150, 2.5, 66, and 6 mg dm?3, respectively, was determined. The results revealed that the best flocculant was Nalco‐77171, which determined 13.5% v/v final sludge separation and 86.5% v/v final clarified water obtained. Kinetics of sludge removal in the transition zone was adjusted to power law, v/v0 = Ktε, where the exponent, ε, varied in the range 0.141–0.670.  相似文献   

17.
The decomposition of dichloroacetic acid (DCAA) in water using a UV/H2O2/micro‐aeration process was investigated in this paper. DCAA cannot be removed by UV radiation, H2O2 oxidation or micro‐aeration alone, while UV/H2O2/micro‐aeration combination processes have proved effective and can degrade this compound completely. With initial concentrations of about 110 μg/L, more than 95.1% of DCAA can be removed in 180 min under UV intensity of 1048.7 μW/cm2, H2O2 dosage of 30 mg/L and micro‐aeration flow rate of 2 L/min. However, more than 30 μg/L of DCAA was left after 180 min by UV/H2O2 combination process without micro‐aeration with the same UV intensity and H2O2 dosage. The effects of applied UV radiation intensity, H2O2 dose, initial DCAA concentration and pH on the degradation of DCAA have been examined in this study. Degradation mechanisms of DCAA with hydroxyl radical oxidation have been discussed. The removal rate of DCAA was sensitive to operational parameters. There was a linear relationship between rate constant k and UV intensity and initial H2O2 concentration, which indicated that a higher removal capacity can be achieved by improvement of both factors. A newly found nitrogenous disinfection by‐product (N‐DBP)‐DCAcAm, which has the potential to form DCAA, was easier to remove than DCAA by UV/H2O2 and UV/H2O2/micro‐aeration processes. Finally, a preliminary cost comparison revealed that the UV/H2O2/micro‐aeration process was more cost‐effective than the UV/H2O2 process in the removal of DCAA from drinking water.  相似文献   

18.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

19.
A chemical-physical method for treatment of aniline containing waste water was developed. At the chemical stage aniline is polymerized by Fenton's reagent. Thus insoluble polyaniline precipitates. The best reaction conditions are: pH-value of 2–3, stepwise dosing of 60 mL H2O2 (30%) and 12 mL saturated FeSO4-solution per litre waste water. The molar ratio Fe(II): H2O2 amounts to 0.3:10. The concentration of aniline is reduced by this chemical treatment from about 20 g/L to 30–40 mg/L. By adsorption at activated charcoal the concentration of aniline can be reduced further to 0.2 mg/L. The resulting sludge can easily be dewatered in a chamber filter press.  相似文献   

20.
The present study employed a modified Fenton system that aims to extend the optimum pH range towards neutral conditions for studying the oxidation of benzene, toluene, ethyl benzene, xylenes (BTEX) using glutamic acid (Glu) as an iron chelator. Addition of 20 mM Glu greatly enhanced the oxidation rate of BTEX in modified Fenton system at pH 5–7. A rapid mass destruction (>97% after 1 h) of BTEX as a water contaminant carried out in the presence of 500 mM H2O2, 10 mM Fe2+, and 20 mM Glu at pH 5 could be shown. The efficiency of this modified Fenton's system for mass destruction of BTEX in contaminated water was measured to estimate the impact of the major process variables that include initial concentrations of soluble Fe, H2O2, Glu (as metal chelating agent), and reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号