首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we present MHYDAS‐Erosion, a dynamic and distributed single‐storm water erosion model developed as a module of the existing hydrological MHYDAS model. As with many catchment erosion models, MHYDAS‐Erosion is able to simulate sediment transport, erosion and deposition by rill and interrill processes. Its originality stems from its capacity to integrate the impact of land management practices (LMP) as key elements controlling the sedimentological connectivity in agricultural catchments. To this end, the water‐sediment pathways are first determined by a specific process‐oriented procedure defined and controlled by the user, which makes the integration of LMP easier. The LMP dynamic behaviours are then integrated into the model as a time‐dependent function of hydrological variables and LMP characteristics. The first version of the model was implemented for vegetative filters and tested using water and sediment discharge measurements at three nested scales of a densely instrumented catchment (Roujan, OMERE Observatory, southern France). The results of discharge and soil loss for simulated rainfall events have been found to acceptably compare with available data. The average R2 values for water and sediment discharge are 0·82 and 0·83, respectively. The sensitivity of the model to changes in the proportion of LMP was assessed for a single rain event by considering three scenarios of the Roujan catchment management with vegetative filters: 0% (Scenario 1), 18% (Scenario 2, real case) and 100% (Scenario 3). Compared to Scenario 2 (real case), soil losses decreased for Scenario 3 by 65% on the agricultural plot scale, 62% on the sub‐catchment scale and 45% at the outlet of the catchment and increased for Scenario 1 by 0% on the plot scale, 26% on the sub‐catchment scale and 18% at the outlet of the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Our understanding of the effect of scale on runoff and sediment transfers within catchments is currently limited by a lack of available data. A multi‐scale dataset of 17 rainfall events collected simultaneously at four spatial scales within a small agricultural catchment in 2005–2006 is presented. Analysis using exploratory techniques and a two‐step, zero‐inflated lognormal mixed‐effects regression model, has demonstrated that event responses, and event response characteristics representing runoff and sediment peaks and area‐normalized yields, are scale dependent, and hence cannot be transferred directly between scales. Runoff and sediment yields increase as scale increases, and it is proposed that this effect, which differs from that observed in the few other studies of scale effects undertaken, is due to increasing connectivity within the catchment, and the dominance of preferential flow pathways including through macropores and field drains. The processes contributing to scale dependence in the data, and the possibility that certain processes dominate at particular scales, are discussed. The data presented here help to improve our spatial understanding of runoff and sediment transport in small agricultural catchments, and provide examples of the type of spatial dataset and the type of analysis that are essential if we are to develop models which are able to predict runoff and soil erosion accurately, and allow us to manage runoff and sediment transport effectively across scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Agricultural land management requires strategies to reduce impacts on soil and water resources while maintaining food production. Models that capture the effects of agricultural and conservation practices on soil erosion and sediment delivery can help to address this challenge. Historic records of climatic variability and agricultural change over the last century also offer valuable information for establishing extended baselines against which to evaluate management scenarios. Here, we present an approach that combines centennial‐scale reconstructions of climate and agricultural land cover with modelling across four lake catchments in the UK where radiometric dating provides a record of lake sedimentation. We compare simulations using MMF‐TWI, a catchment‐scale model developed for humid agricultural landscapes that incorporates representation of seasonal variability in vegetation cover, soil water balance, runoff and sediment contributing areas. MMF‐TWI produced mean annual sediment exports within 9–20% of sediment core‐based records without calibration and using guide parameter values to represent vegetation cover. Simulations of land management scenarios compare upland afforestation and lowland field‐scale conservation measures to reconstructed historic baselines. Oak woodland versus conifer afforestation showed similar reductions in mean annual surface runoff (8–16%) compared to current moorland vegetation but a larger reduction in sediment exports (26–46 versus 4–30%). Riparian woodland buffers reduced upland sediment yields by 15–41%, depending on understorey cover levels, but had only minor effect on surface runoff. Planting of winter cover crops in the lowland arable catchment halved historic sediment exports. Permanent grass margins applied to sets of arable fields across 15% or more of the catchment led to further significant reduction in exports. Our findings show the potential for reducing sediment delivery at the catchment scale with land management interventions. We also demonstrate how MMF‐TWI can support hydrologically‐informed decision making to better target conservation measures in humid agricultural environments. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Simultaneous field monitoring of runoff and suspended sediment loads from a 30 ha, artificially‐drained, mixed‐agricultural catchment in Herefordshire, UK indicates field drains are the dominant pathway for the transfer of runoff and sediment to the stream. Surface runoff pathways draining 6·2% of the catchment area transported around 1% of the catchment sediment load, while subsurface runoff in field drains draining 26·5% of the catchment transported around 24% of the sediment load. The explanations offered here for the dominance of drainflow—the spatial limitation of surface runoff generation and low hillslope‐stream connectivity of surface runoff compared with subsurface runoff—are also likely to apply to other artificially‐drained lowland agricultural catchments in the UK. These catchments are usually on poorly‐drained soils, and land management can have a considerable effect on the operation of runoff pathways and the transfer of sediment from hillslope to stream. As a result, subsurface inputs may also dominate sediment transfers in other underdrained catchments. The focus on sediment and pollutant losses via surface runoff pathways means that pollution inputs from subsurface, preferential pathways have been unfairly neglected, and it may be more important to focus on subsurface sediment and sediment‐associated pollution inputs for mitigation rather than inputs from surface pathways. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

A Geographical Information System (GIS) based method is proposed and demonstrated for the identification of sediment source areas and the prediction of storm sediment yield from catchments. Data from the Nagwa and Karso catchments in Bihar (India) have been used. The Integrated Land and Water Information System (ILWIS) GIS package has been used for carrying out geographic analyses. An Earth Resources Data Analysis System (ERDAS) Imagine image processor has been used for the digital analysis of satellite data for deriving the land cover and soil characteristics of the catchments. The catchments were discretized into hydrologically homogeneous grid cells to capture the catchment heterogeneity. The cells thus formed were then differentiated into cells of overland flow regions and cells of channel flow regions based on the magnitude of their flow accumulation areas. The gross soil erosion in each cell was calculated using the Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio (SDR) was used for determination of the total sediment yield of each catchment during isolated storm events.  相似文献   

10.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Tropical cyclones expose river basins to heavy rainfall and flooding, and cause substantial soil erosion and sediment transport. There is heightened interest in the effects of typhoon floods on river basins in northeast Japan, as the migration of radiocaesium‐bearing soils contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident will affect future radiation levels. The five main catchments surrounding FDNPP are the Odaka, Ukedo, Maeda, Kuma and Tomioka basins, but little quantitative modelling has been undertaken to identify the sediment redistribution patterns and controlling processes across these basins. Here we address this issue and report catchment‐scale modelling of the five basins using the GETFLOWS simulation code. The three‐dimensional (3D) models of the basins incorporated details of the geology, soil type, land cover, and used data from meteorological records as inputs. The simulation results were checked against field monitoring data for water flow rates, suspended sediment concentrations and accumulated sediment erosion and deposition. The results show that the majority of annual sediment migration in the basins occurs over storm periods, thus making typhoons the main vectors for redistribution. The Ukedo and Tomioka basins are the most important basins in the region in terms of overall sediment transport, followed by the other three basins each with similar discharge amounts. Erosion is strongly correlated with the underlying geology and the surface topography in the study area. A low permeability Pliocene Dainenji formation in the coastal area causes high surface water flow rates and soil erosion. Conversely, erosion is lower in an area with high permeability granite basement rocks between the Hatagawa and Futaba faults in the centre of the study area. Land cover is also a factor controlling differences in erosion and transport rates between forested areas in the west of the study area and predominantly agricultural areas towards the east. The largest sediment depositions occur in the Ogaki and Takigawa Dams, at the confluence of the Takase and Ukedo Rivers, and at the Ukedo River mouth. Having clarified the sediment redistribution patterns and controlling processes, these results can assist the ongoing task of monitoring radioactive caesium redistribution within Fukushima Prefecture, and contribute to the design and implementation of measures to protect health and the environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In peatlands, fluvial erosion can lead to a dramatic decline in hydrological function, major changes in the net carbon balance and loss of biodiversity. Climate and land management change are thought to be important influences on rates of peat erosion. However, sediment production in peatlands is different to that of other soils and no models of erosion specifically for peatlands currently exist. Hence, forecasting the influence of future climate or spatially‐distributed management interventions on peat erosion is difficult. The PESERA‐GRID model was substantially modified in this study to include dominant blanket peat erosion processes. In the resulting fluvial erosion model, PESERA‐PEAT, freeze–thaw and desiccation processes were accounted for by a novel sediment supply index as key features of erosion. Land management practices were parameterized for their influence on vegetation cover, biomass and soil moisture condition. PESERA‐PEAT was numerically evaluated using available field data from four blanket peat‐covered catchments with different erosion conditions and management intensity. PESERA‐PEAT was found to be robust in modelling fluvial erosion in blanket peat. A sensitivity analysis of PESERA‐PEAT showed that modelled sediment yield was more sensitive to vegetation cover than other tested factors such as precipitation, temperature, drainage density and ditch/gully depth. Two versions of PESERA‐PEAT, equilibrium and time‐series, produced similar results under the same environmental conditions, facilitating the use of the model at different scales. The equilibrium model is suitable for assessing the high‐resolution spatial variability of average monthly peat erosion over the study period across large areas (national or global assessments), while the time‐series model is appropriate for investigating continuous monthly peat erosion throughout study periods across smaller areas or large regions using a coarser‐spatial resolution. PESERA‐PEAT will therefore support future investigations into the impact of climate change and management options on blanket peat erosion at various spatial and temporal scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Processes of soil erosion and sediment transport are strongly influenced by land use changes so the modelling of land use changes is important with respect to the simulation of soil degradation and its on‐site and off‐site consequences. The reliability of simulation results from erosion models is circumscribed by considerable spatial variation in many parameters. However, most of the currently widely used erosion models at the mesoscale are semidistributed, which leads to difficulties in incorporating a high degree of spatial information, especially land use information, so that the effects of land use changes on soil erosion have hitherto not been investigated in detail using these models. In this article, a grid‐based distributed erosion and sediment transport model is introduced, which simulates the spatial pattern of erosion and deposition rates and sediment transport processes in river channels. In this model, land use affects soil erosion through altering soil loss and influencing sediment delivery. Simulated soil erosion for events recorded in 1989 and 1996 in the Lushi basin in China was analyzed by comparing it with historical land use maps. The results indicated that even relatively minor land use changes had a significant effect on regional soil erosion rates and sediment transport to rivers. The average erosion rate increased from 1989 to 1996, after the transformation of forest to farmland. The results of the study suggest that the proposed soil erosion model can be applied in similar river basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates suspended sediment transport and dynamics of two nested agricultural lowland Mediterranean catchments with a difference of two orders of magnitude in the surface area (i.e., 1 and 264 km2). The effects of the drainage catchment area over the specific suspended sediment yield are assessed by using the nested approach over various timeframes. A detailed analysis of the rainfall–runoff–sediment transport relationships during the 2‐year study period shows that the hydrological and sedimentological responses were extremely variable for both catchments. Very low or no correlations were observed between the rainfall intensity and the selected hydrological variables and sediment loads. However, remarkable or high correlations were obtained between the rainfall intensity and the maximum and average suspended sediment concentrations, indicating that rainfall per unit time has little control on the hydrological response, but that, simultaneously, its high‐erosive power triggers sediment production, increasing the sedimentary response of the catchments. This study also illustrates how sediment is mainly transported during floods, producing predominantly clockwise hysteretic loops. Moreover, the small headwater catchment exerts a reduced (or even negligible) effect over the hydro‐sedimentary response of the larger downstream catchment, caused by the reduced sediment availability in a landscape with an inherent disconnection of the sediment pathways.  相似文献   

15.
A major challenge for geomorphologists is to scale up small‐magnitude processes to produce landscape form, yet existing approaches have been found to be severely limited. New ways to scale erosion and transfer of sediment are thus needed. This paper evaluates the concept of sediment connectivity as a framework for understanding processes involved in sediment transfer across multiple scales. We propose that the concept of sediment connectivity can be used to explain the connected transfer of sediment from a source to a sink in a catchment, and movement of sediment between different zones within a catchment: over hillslopes, between hillslopes and channels, and within channels. Using fluvial systems as an example we explore four scenarios of sediment connectivity which represent end‐members of behaviour from fully linked to fully unlinked hydrological and sediment connectivity. Sediment‐travel distance – when combined with an entrainment parameter reflecting the frequency–magnitude response of the system – maps onto these end‐members, providing a coherent conceptual model for the upscaling of erosion predictions. This conceptual model could be readily expanded to other process domains to provide a more comprehensive underpinning of landscape‐evolution models. Thus, further research on the controls and dynamics of travel distances under different modes of transport is fundamental. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Fluvial sediment delivery is the main form of sediment transfer from the land to the sea, but this process is currently undergoing significant variations due to the alteration of catchment and base level controls related to climate change and human activities, especially the widespread construction of dams. Using the lower Wei River as an example and an integrated approach, this study investigates the variation of fluvial sediment delivery, as well as the connectivity under the effects of both controls. Based on hydrological records and channel cross‐section surveys, sediment budgets were constructed for two periods (1960–1970, 1970–1990) after the dam was closed in 1960. In the period 1960–1969, due to the elevated base level (327.2 ± 1.62 m) caused by the dam, the aggradation rate was 0.451 × 108 t yr‐1 in the channel and 0.716 × 108 t yr‐1 on the floodplain, indicating that the positive lateral connectivity between these locations was enhanced. As a consequence, serious sediment storage resulted in a sediment delivery ratio (SDR) that was smaller than that occurring before 1960. In the period 1970–1990, sweeping soil and water conservation (SWC) measures were implemented, resulting in a reduction of the connectivity between the trunk and tributaries, and a decrease of ~31% in the mean sediment input. In addition, together with the base level fluctuation in the range of 327.47 ± 0.49 m, the annual variation in sediment storage was primarily dependent on the water–sediment regime affected by the SWC. The negative lateral connectivity was enhanced between the channel and floodplain via bank erosion. Consequently, the aggradation rate was reduced by 89% on the floodplain and by 96% in the channel. Sediment output continued to decrease primarily due to the SWC practices and climate changes in this period, whereas the SDR increased due to the enhanced longitudinal connectivity between the upstream and downstream. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Intensive agricultural practices on sensitive soils induce high erosion rates in central Belgium. Expert-rules models quantify runoff and erosion at catchment scale, avoiding over-parameterization, and can include some direct or indirect connectivity features. The aim of this article is to test the ability of an expert-based model, LandSoil, to quantify runoff and to locate erosion and sedimentation areas in a small cultivated loamy catchment in Belgium during the years 2014, 2015 and 2016. Spatialized data are important for assessing model outputs and the erosive response. Measurements of runoff and observation of spatial erosion/deposition patterns, especially around major connectivity points, permitted an assessment of the reliability of the model results. Runoff modelling gave contrasting results (good linear adjustment at the outlet of the 83 ha sub-catchment (point 1): r2 of 0.96, Nash–Sutcliffe criterion of 0.95; less good at the outlet of the 3.9 ha sub-catchment (point 2): r2 of 0.28, Nash–Sutcliffe criterion of –0.47). For point 2 the poor results are explained by the very few runoff events observed, a scaling effect and the small area with a single land use. Graduated rulers demonstrate that the model is able to provide a coherent pattern of erosion/deposition. The study highlights great sensitivity to the effect of land use, land allocation, landscape design and slope gradients. Grass strips induce deposition of eroded particles when slopes are gentle (< 2%). Woodland strips decrease connectivity by being in the stream but deposit thinner sediment layers. Field boundaries have a role in the transport, but not really the quantity, of sediments. This model validation in the Belgian loess context allows us to use LandSoil in other similar environments in order to estimate the effects of landscape management scenarios. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
High‐resolution digital elevation models (DEMs) from repeat LiDAR (light detection and ranging) or SfM (structure from motion) surveys have become an important tool in process geomorphology. The spatial pattern of negative and positive changes of surface elevation on raster DEMs of difference (DoD) can be interpreted in terms of geomorphic processes, and has been used for morphological budgeting. We show how the application of flow routing algorithms and flow accumulation opens new opportunities for the analysis of DoD. By accumulating the values of the DoD along downslope flowpaths delineated on a DEM, these algorithms lend themselves to computing the net balance, i.e. sediment yield (SY), for the contributing area of each cell. Doing the same for the negative subset of the DoD yields a minimum estimate of erosion (E) within the contributing area. The division of SY by E yields (a maximum estimate of) the sediment delivery ratio (SDR), that is the proportion of material eroded within the contributing area of each cell that has been exported from that area. The resulting SDR is a spatially distributed measure of functional sediment connectivity. In this letter, we develop the computationally simple approach by means of an example DoD from a lateral moraine section in the Upper Kaunertal Valley, Austrian Central Alps. We also discuss advantages, assumptions and limitations, and outline potential applications to connectivity research using field‐, laboratory‐, and model‐based DoD. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Linking landscape morphological complexity and sediment connectivity   总被引:2,自引:0,他引:2  
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号