首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Morphological features of braided rivers (bars, channels and pools) experience major changes in area, shape and spatial distribution as a response to (i) the pulsation of discharge during a flood and (ii) the bed evolution induced by floods. In this work, at‐a‐station relationships between water level and planform configuration were investigated on the Tagliamento River, a large gravel‐bed braided river in northeast Italy, over a 2‐year study period comprising three bankfull events and several small‐to‐medium floods. The analysis was performed on two 1‐km‐long reaches, characterized by different riparian vegetation cover. Ground‐based images with an hourly temporal resolution were acquired using software‐controlled, digital cameras. Bars, channels, pools and vegetated patches were manually digitized on more than 100 rectified images. Sequences of constant‐level images spanning the study period were used to quantify the impact of floods on the stability of at‐a‐station relationships and on the turnover rate of water bodies. The analysis shows that wetted area increased almost linearly with water level in both reaches. The average number of branches per cross‐section peaked at intermediate flow levels, increasing from 2 at low flow up to 6–7. The number of branches displayed the largest fluctuations over time, with significant changes produced also by moderate floods. Turnover rates were high in both reaches, with more than 30% of wetted areas at low flow converting into bare gravel in less than 2 months. Vegetation colonization was found to limit the mobility of the low flow channels over time by concentrating the flow in fewer, deeper anabranches. The number of channels per cross‐section was 30–40% less in the vegetated reach and the proportion of low flow water bodies in the same position after 12 months increased from 3% to 14%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Field, laboratory, and numerical modelling research are increasingly demonstrating the potential of riparian tree colonization and growth to influence fluvial dynamics and the evolution of fluvial landforms. This paper jointly analyses multi‐temporal, multispectral ASTER data, continuous river stage and discharge data, and field observations of the growth rates of the dominant riparian tree species (Populus nigra) along a 21 km reach of the Tagliamento River, Italy. Research focuses on the period 2004–2009, during which there was a bankfull flood on 24 October 2004, followed by 2 years with low water levels, nearly 2 years with only modest flow pulses, and then a final period from 15 August 2008 that included several intermediate to bankfull flow events. This study period of increasing flow disturbance allows the exploration of vegetation dynamics within the river's active corridor under changing flow conditions. The analysis demonstrates the utility of ASTER data for investigating vegetation dynamics along large fluvial corridors and reveals both spatial and temporal variations in the expansion, coalescence, and erosion of vegetated patches within the study reach. Changes in the extent of the vegetated area and its dynamics vary along the study reach. In sub‐reaches where riparian tree growth is vigorous, the vegetated area expands rapidly during time periods without channel‐shaping flows, and is subsequently able to resist erosion by bankfull floods. In contrast, in sub‐reaches where tree growth is less vigorous, the vegetated area expands at a slower rate and is more readily re‐set by bankfull flood events. This illustrates that the rate of growth of riparian trees is crucial to their ability to contribute actively to river corridor dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Dryland rivers are recognized for limited research and high uncertainties with respect to understanding biogeomorphic processes. This study uses aerial photography, sediment analysis, palynology indicators and hydraulic modelling to investigate the role of riparian vegetation in influencing the response of systems to disturbance, the trajectory of channel evolution and the potential for management. The study focuses on cleared and uncleared sites in the Yerritup catchment, along the south coast of Western Australia, that occur along a transect with a consistent stream gradient and landscape topographic setting. Downstream reaches show no gross botanical change, but gradual sediment deposition across the floodplain of up to 40 cm based on palynological and sedimentary indicators. Channel response in the cleared section by incision, widening and floodplain degradation began rapidly after land clearing, but is driven by large flood events. Degradation of riparian vegetation has significantly increased the sensitivity of the system. The cleared reaches have transformed from a low‐capacity channel, under‐adjusted to the prevailing flow regime, to the large present channel that is now over‐adjusted to the predominantly low to moderate seasonal (occasional flood) flow regime. Modelling of pre‐settlement erosive potential reveals that the entire system was naturally sensitive to change, and was primed to erode once riparian vegetation was removed. The trajectory of channel evolution and the role of riparian vegetation is examined in relation to undisturbed reaches in the system and an appreciation of the historical range of variability in geomorphic response. Analysis of the patterns of contemporary vegetation growth identify the potential to re‐establish vegetation where it is elevated from saline baseflow. However, the system is assessed as being close to a threshold where restoration is no longer possible and remediation options become more limited as eco‐hydraulic and hydrochemical changes continue. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Historical archives of grey‐scale river channel imagery are extensive. Here, we present and test a methodology to extract detailed quantitative topographic data from such imagery of sand‐bed rivers. Extracting elevation information from rivers is difficult as they are characterized by a low relative relief (<4 m); the area of interest may be spatially extensive (e.g. active channel widths >500 m in large braided rivers); the rate of change of surface elevation is generally low except in the vicinity of individual channel banks where the rate of change is very high; there is the complication that comes from inundation; and there may be an added complication caused by blockage of the field of view by vegetation. Here, we couple archival photogrammetric techniques with image processing methods and test these for quantification of sand‐bed braided river dynamics, illustrated for a 500 m wide, 3 km long reach of the South Saskatchewan River, Canada. Digital photogrammetry was used to quantify dry areas and water edge elevations. A methodology was then used to calibrate the spectral signature of inundated areas by combining established two media digital photogrammetric methods and image matching. This allowed determination of detailed depth maps for inundated areas and, when combined with dry area data, creation of complete digital elevation models. Error propagation methods were used to determine the erosion and deposition depths detectable from sequential digital elevation models. The result was a series of elevation models that demonstrate the potential for acquiring detailed and precise elevation data from any historical aerial imagery of rivers without needing associated calibration data, provided that imagery is of the necessary scale to capture the features of interest. We use these data to highlight several aspects of channel change on the South Saskatchewan River, including bar movement, bank erosion and channel infilling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Restoration of the upper Strawberry River included bank stabilization techniques because it was assumed that excessive bank erosion was degrading spawning habitat for Bonneville cutthroat trout (BCT). Using a long‐term aerial photograph record, the historical range of variability in bank erosion rates and channel geometry was determined, and this information was used to assess present‐day conditions and the rationale for restoration. Relative to historical variability, the channel planform was relatively stable and bank erosion rates were the lowest recorded in the post‐disturbance era. Although a historical loss of riparian vegetation coincided with a shift to a wider and more sinuous channel, lateral migration rates declined and the channel narrowed as riparian cover increased in the decades before restoration, indicating a process of natural recovery. Furthermore, it was found that the percentage of fine sediment in the streambed before restoration was insufficient to affect BCT spawning success. Together these results suggest that bank erosion and fine sediment did not affect the quality of spawning habitat or the abundance of BCT on the upper Strawberry River. The results highlight how a historical analysis can be used to identify the sources of habitat degradation and inform the selection of restoration goals and strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   

11.
A series of laboratory experiments demonstrates that riparian vegetation can cause a braided channel to self‐organize to, and maintain, a dynamic, single‐thread channel. The initial condition for the experiments was steady‐state braiding in non‐cohesive sand under uniform discharge. From here, an experiment consisted of repeated cycles alternating a short duration high flow with a long duration low flow, and uniform dispersal of alfalfa seeds over the bed at the end of each high flow. Plants established on freshly deposited bars and areas of braidplain that were unoccupied during low flow. The presence of the plants had the effect of progressively focusing the high flow so that a single dominant channel developed. The single‐thread channel self‐adjusted to carry the high flow. Vegetation also slowed the rate of bank erosion. Matching of deposition along the point bar with erosion along the outer bend enabled the channel to develop sinuosity and migrate laterally while suppressing channel splitting and the creation of new channel width. The experimental channels spontaneously reproduced many of the mechanisms by which natural meandering channels migrate and maintain a single dominant channel, in particular bend growth and channel cutoff. In contrast with the braided system, where channel switching is a nearly continuous process, vegetation maintained a coherent channel until wholesale diversion of flow via cutoff and/or avulsion occurred, by which point the previous channel tended to be highly unfavorable for flow. Thus vegetation discouraged the coexistence of multiple channels. Varying discharge was key to allowing expression of feedbacks between the plants and the flow and promoting the transition from braiding to a single‐thread channel that was then dynamically maintained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We modify a simple numerical stream‐pattern model to examine the effect of sediment stabilization by roots on the channel pattern of bedload rivers. In the model, vegetation enhances bank resistance to erosion, causing the development of a single channel instead of a rapidly changing, multiple channel (braided) pattern. Net aggradation resulting from a high sediment supply, however, causes frequent avulsions that destroy vegetation locally, leading to the development of a multiple‐channel pattern. A stability diagram representing multiple model runs predicts whether a river will exhibit single or multiple channels, based on plant‐enhanced bank strength, and on the time scale of plant development relative to a time scale for change in unvegetated channels. A second stability diagram predicts the way in which the amplitude and period of a fluctuating imposed sediment load influence whether a single or multiple‐channel pattern develops. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
This study assessed the effect of the largest flood since dam regulation on geomorphic and large wood (LW) trends using LW distributions at three time periods on the 150 km long Garrison Reach of the Missouri River. In 2011, a flood exceeded 4390 m3/s for a two‐week period (705% above mean flow; 500 year flood). LW was measured using high resolution satellite imagery in summer 2010 and 2012. Ancillary data including forest character, vegetation cover, lateral bank retreat, and channel capacity. Lateral bank erosion removed approximately 7400 standing trees during the flood. Other mechanisms, that could account for the other two‐thirds of the measured in‐channel LW, include overland flow through floodplains and islands. LW transport was commonly near or over 100 km as indicated by longitudinal forest and bank loss and post‐flood LW distribution. LW concentrations shift at several locations along the river, both pre‐ and post‐flood, and correspond to geomorphic river regions created by the interaction of the Garrison Dam upstream and the Oahe Dam downstream. Areas near the upstream dam experienced proportionally higher rates of bank erosion and forest loss but in‐channel LW decreased, likely due to scouring. A large amount of LW moved during this flood, the chief anchoring mechanism was not bridges or narrow channel reaches but the channel complexity of the river delta created by the downstream reservoir. Areas near the downstream dam experienced bank accretion and large amounts of LW deposition. This study confirms the results of similar work in the Reach: despite a historic flood longitudinal LW and channel trends remain the same. Dam regulation has created a geomorphic and LW pattern that is largely uninterrupted by an unprecedented dam regulation era flood. River managers may require other tools than infrequent high intensity floods to restore geomorphic and LW patterns. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
With riverine flooding set to be more frequent in many parts of the world as a result of climate change, the interactions between fluvial morphodynamics and riparian vegetation may depend in part on the sequence of flood events. This paper describes a laboratory study of the geomorphic adjustment of a braided river to sequences of floods across five different strengths of braidplain vegetation. By using alfalfa as a proxy for braidplain vegetation, the differing plant life stages were used to represent the varying strengths of biogeomorphic feedbacks across the floods. Boundary conditions were constrained by sets of experimental runs with both equilibrium sediment loads and deficit loads. Changes in bed topography were monitored and assessed using a detailed digital elevation model, digital imagery and continuous monitoring of the transported sediment. Results demonstrate that in absence of plant colonization, vegetation placed the rivers in a non-equilibrium condition, in which riparian vegetation encouraged the development of new channels, increased the system channel width and enhanced topographic irregularity, these effects being more noticeable during the low-flow periods. The morphodynamics was found to be less sensitive to variations in flood discharges as the vegetation influence (strength) increased from minimum to maximum, until vegetation began to die back and the impacts of flood sequences became yet again evident. Although the overall sediment transport rate was reduced under full-grown vegetation conditions, the presence of the mature plants across the braid bars resulted in the greatest channel scour depths. Results are considered in light of expected changes in flood frequency with climate and likely morphodynamic responses of river systems as a result.  相似文献   

15.
Thalweg migration of an alluvial river plays a key role in channel evolution, which may influence the effect of existing river training works and biodiversity on floodplains, and cause losses in riparian land and property. The braided reach of the Lower Yellow River underwent continuous channel aggradation during the period from 1986 to 1999, and then remarkable channel degradation in 1999–2015 owing to the state of operation of the Xiaolangdi Reservoir in 1999. Here we quantify associated thalweg migration changes and identify the key influencing factor in the braided reach. Thalweg‐migration distances and intensities at section‐ and reach‐scales were calculated during the past 30 years from 1986 to 2015, in order to investigate the characteristics of thalweg migration in the reach. There was a 47% reduction in the reach‐scale thalweg‐migration distance and a 35% reduction in the corresponding migration intensity after the reservoir operation. It is also revealed that fluvial erosion intensity is a dominant factor in controlling the thalweg migration, based on the investigation into various influencing factors in the study reach. The thalweg‐migration intensity of the braided reach can be expressed as a power function of the previous four‐year average fluvial erosion intensity. The calculated thalweg‐migration intensities in 1986–2015 using the proposed relation generally agree with the observed data. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
We discuss the importance of modelling riparian vegetation and river flow interactions under differing hydrologic regimes. Modelling tools have notable implications with regard to the understanding of riverine ecosystem functioning and to promote sustainable management of water resources. We present both deterministic and stochastic approaches with different levels of simplification, and discuss their use in relation to river and vegetation dynamics at the related scale of interest. We apply such models to both meandering and braided rivers, in particular focusing on the floodplain dynamics of an alpine braided river affected by water impoundment. For this specific case we show what the expected changes in riparian vegetation may be in a ‘controlled release’ scenario for the postdam river Maggia, Switzerland. Finally, the use of these models is discussed in the context of current research efforts devoted to river restoration practice.  相似文献   

17.
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This study examined the temporal dynamics and longitudinal distribution of wood over a multi‐decadal timescale at the river reach scale (36 km) and a meander bend scale (300–600 m) in the Ain River, a large gravel‐bed river flowing through a forested corridor, and adjusting to regulation and floodplain land‐use change. At the 36 km scale, more wood was recruited by bank erosion in 1991–2000 than since the 1950s. The longitudinal distribution of accumulations was similar between 1989 and 1999, but in both years individual pieces occurred homogeneously throughout the reach, while jam distribution was localized, associated with large concave banks. A relationship between the mean number of pieces and the volume recruited by bank erosion (r2 = 0·97) indicated a spatial relationship between areas of wood production and storage. Wood mass stored and produced and channel sinuosity increased from 1993 to 2004 at three meander bends. Sinuosity was related to wood mass recruited by bank erosion during the previous decade (r2 = 0·73) and both of these parameters were correlated to the mean mass of wood/plot (r2 = 0·98 and 0·69 respectively), appearing to control wood storage and delivery at the bend scale. This suggests a local origin of wood stored in channel, not input from upstream trapped by preferential sites. The increase in wood since 1950 is a response to floodplain afforestation, to a change from braided to meandering channel pattern in response to regulation, and to recent large floods. We observed temporal stability of supply and depositional sectors over a decade (on a reach scale). Meander bends were major storage sites, trapping wood with concave banks, also delivering wood. These results, and the link between sinuosity and wood frequency, establish geomorphology as a dominant wood storage and recruitment control in large gravel‐bed rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Drastic channel adjustments have affected the main alluvial rivers of Tuscany (central Italy) during the 20th century. Bed‐level adjustments were identified both by comparing available topographic longitudinal profiles of different years and through field observations. Changes in channel width were investigated by comparing available aerial photographs (1954 and 1993–98). Bed incision represents the dominant type of vertical adjustment, and is generalized along all the fluvial systems investigated. The Arno River system is the most affected by bed‐level lowering (up to 9 m), whereas lower incision (generally less than 2 m) is observed along the rivers of the southern part of the region. Human disturbances appear to be the dominant factors of adjustments: the main phase of vertical change occurred during the period 1945–80, in concomitance with the phase of maximum sediment mining activity at the regional scale. The second dominant type of adjustment that involved most of the rivers in the region consists of a narrowing of the active channel. Based on measurements of channel width conducted on aerial photographs, 38% of the reaches analysed experienced a narrowing greater than 50% of the initial channel width. The largest values of channel narrowing were observed along initially braided or sinuous with alternate bars morphologies in the southern portion of the region. A regional scheme of channel adjustments is derived, based on initial channel morphology and on the amounts of incision and narrowing. Different styles of channel adjustments are described. Rivers that were originally sinuous with alternate bars to braided generally became adjusted by a moderate incision and a moderate to intense narrowing; in contrast, sinuous‐meandering channels mainly adjusted vertically, with a minor amount of narrowing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号