首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
UK peatlands are affected by severe gully erosion with consequent impacts on ecosystem services from these areas. Incision into the peat can damage the vegetation and hydrology and lead to increases in carbon loss and sediment transfer downstream. Gullies represent then a conduit for and a hotspot of carbon loss but the relatively high water tables of gullies have meant that they have been identified as areas with a high restoration potential because of easily restored peat‐forming conditions. This study uses a series of gully sites, subject to different restoration interventions, to investigate differences in carbon pathways (DOC, CO2) and hydrology between restoration strategies and gully position. The results show that the position within the gully (interfluve, gully side, or gully floor) does not significantly affect water quality but that it plays a significant role in CO2 exchange. Gully floors are areas of high photosynthesis and ecosystem respiration, though net ecosystem exchange is not significantly different across the gully. While gully position plays a role in the cycling of some carbon species, this study highlights the importance of vegetation as a key control on carbon cycling. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Increased erosion associated with land use change often alters the flux of sediments and nutrients, but few studies have looked at the interaction between these disrupted cycles. We studied the effects of gully erosion on carbon and nitrogen storage in surface soil/sediment and herbaceous vegetation and on C and N mineralization in a headwater catchment used for cattle grazing. We found significantly lower C and N stored in an incising gully compared with an intact valley. This storage was significantly higher in an adjacent stabilizing gully, although not to the levels found in the intact valley. The intact valley had two to four times higher soil/sediment concentrations of total organic C, total N and Colwell extractable P than the incising gully. Lower storage was not explained by differences in vegetation biomass density or silt and clay content. Vegetation accounted for only 8% of C and 2% of N storage. Although not a significant store in itself, vegetation has an important indirect role in restoring and maintaining soil/sediment C and N stocks in eroding areas. We found significant linear relationships between C and N mineralization rates and soil/sediment C and N content, with lower rates occurring in the eroded sediment. These findings support our initial hypothesis that gully erosion reduces C and N storage and mineralization rates in eroding catchments. The implications of this study include a change to the quality of eroded sediments in headwater catchments, causing C‐poorer and N‐poorer sediments to be exported but overall loads to increase. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Active gully systems developed on highly weathered or loose parent material are an important source of runoff and sediment production in degraded areas. However, a decrease of land pressure may lead to a return of a partial vegetation cover, whereby gully beds are preferred recolonization spots. Although the current knowledge on the role of vegetation on reducing sediment production on slopes is well developed, few studies exist on the significance of restoring sediment transport pathways on the total sediment budget of degraded mountainous catchments. This study in the Ecuadorian Andes evaluates the potential of vegetation to stabilize active gully systems by trapping and retaining eroded sediment in the gully bed, and analyses the significance of vegetation restoration in the gully bed in reducing sediment export from degraded catchments. Field measurements on 138 gully segments located in 13 ephemeral steep gullies with different ground vegetation cover indicate that gully bed vegetation is the most important factor in promoting short‐term (1–15 years) sediment deposition and gully stabilization. In well‐vegetated gully systems ( ≥ 30% of ground vegetation cover), 0.035 m3 m–1 of sediment is deposited yearly in the gully bed. Almost 50 per cent of the observed variance in sediment deposition volumes can be explained by the mean ground vegetation cover of the gully bed. The presence of vegetation in gully beds gives rise to the formation of vegetated buffer zones, which enhance short‐term sediment trapping even in active gully systems in mountainous environments. Vegetation buffer zones are shown to modify the connectivity of sediment fluxes, as they reduce the transport efficiency of gully systems. First calculations on data on sediment deposition patterns in our study area show that gully bed deposition in response to gully bed revegetation can represent more than 25 per cent of the volume of sediment generated within the catchment. Our findings indicate that relatively small changes in landscape connectivity have the potential to create strong (positive) feedback loops between erosion and vegetation dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
In peatlands, fluvial erosion can lead to a dramatic decline in hydrological function, major changes in the net carbon balance and loss of biodiversity. Climate and land management change are thought to be important influences on rates of peat erosion. However, sediment production in peatlands is different to that of other soils and no models of erosion specifically for peatlands currently exist. Hence, forecasting the influence of future climate or spatially‐distributed management interventions on peat erosion is difficult. The PESERA‐GRID model was substantially modified in this study to include dominant blanket peat erosion processes. In the resulting fluvial erosion model, PESERA‐PEAT, freeze–thaw and desiccation processes were accounted for by a novel sediment supply index as key features of erosion. Land management practices were parameterized for their influence on vegetation cover, biomass and soil moisture condition. PESERA‐PEAT was numerically evaluated using available field data from four blanket peat‐covered catchments with different erosion conditions and management intensity. PESERA‐PEAT was found to be robust in modelling fluvial erosion in blanket peat. A sensitivity analysis of PESERA‐PEAT showed that modelled sediment yield was more sensitive to vegetation cover than other tested factors such as precipitation, temperature, drainage density and ditch/gully depth. Two versions of PESERA‐PEAT, equilibrium and time‐series, produced similar results under the same environmental conditions, facilitating the use of the model at different scales. The equilibrium model is suitable for assessing the high‐resolution spatial variability of average monthly peat erosion over the study period across large areas (national or global assessments), while the time‐series model is appropriate for investigating continuous monthly peat erosion throughout study periods across smaller areas or large regions using a coarser‐spatial resolution. PESERA‐PEAT will therefore support future investigations into the impact of climate change and management options on blanket peat erosion at various spatial and temporal scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
As a result of serious soil erosion on the Loess Pla-teau of China, about 1.6 billion tons of silt discharge into the downstream and 0.4 billion tons deposit on the riverbed every year, causing serious threat to the life and property of the local people on both banks of the lower Yellow River[1]. Since the 1950s, the Chinese government has initiated the work on soil and water conservation and environmental management on the Loess Plateau and formulated the guiding principle of hillslope and …  相似文献   

8.
Increased sediment loads from accelerated catchment erosion significantly degrade waterways worldwide. In the South East Queensland region of Australia, sediment loads are degrading Moreton Bay, a Ramsar listed wetland of international significance. In this region, like most parts of coastal Australia, sediment is predominantly derived from gully and channel bank erosion processes. A novel approach is presented that uses carbon and nitrogen stable isotope ratios and elemental composition to discriminate between these often indistinguishable subsoil sediment sources. The conservativeness of these sediment properties is first tested by examining the effect of particle size separation (testing for consistency during transport) and the effect of sampling at different times (testing for temporal source consistency). The discrimination potential of these sediment properties is then assessed with the conservative properties, based on the particle size and temporal analyses, modelled to determine sediment provenance in three catchments. Nitrogen sediment properties were found to have significant particle size enrichment and high temporal variance indicative of non‐conservative behaviour. Conversely, carbon stable isotopes had very limited particle size and temporal variability highlighting their suitability for sediment tracing. Channel erosion was modelled to be a significant source of sediment (μ 51%, σ 9%) contrasting desktop modelling research that estimated gully erosion is the predominant sediment source. To limit the supply of sediment to Moreton Bay, channel bank and gully erosion must both be targeted by sediment management programs. By distinguishing between subsoil sediment sources, this approach has the potential to enhance the management of sediment loads degrading waterways worldwide. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Fallout radionuclides (FRNs) 137Cs and 210Pb are well established as tracers of surface and sub‐surface soil erosion contributing sediment to river systems. However, without additional information, it has not been possible to distinguish sub‐surface soil erosion sources. Here, we use the FRN 7Be (half‐life 53 days) in combination with 137Cs and excess 210Pb to trace the form of erosion contributing sediment in three large river catchments in eastern Australia; the Logan River (area 3700 km2), Bowen River (9400 km2) and Mitchell River (4700 km2). We show that the combination of 137Cs, excess 210Pb and 7Be can discriminate horizontally aligned sub‐surface erosion sources (rilled and scalded hillslopes and the floors of incised drainage lines and gully ‘badland’ areas) from vertical erosion sources (channel banks and gully walls). Specifically, sub‐surface sources of sediment eroded during high rainfall and high river flow events have been distinguished by the ability of rainfall‐derived 7Be to label horizontal soil surfaces, but not vertical. Our results indicate that in the two northern catchments, erosion of horizontal sub‐surface soil sources contributed almost as much fine river sediment as vertical channel banks, and several times the contribution of hillslope topsoils. This result improves on source discrimination provided previously and indicates that in some areas erosion of hillslope soils may contribute significantly to sediment yield, but not as topsoil loss. We find that in north‐eastern Australia, scalded areas on hillslopes and incising drainage lines may be sediment sources of comparable importance to vertical channel banks. Previous studies have used the combination of 137Cs, excess 210Pb and 7Be to estimate soils losses at the hillslope scale. Here, we show that with timely and judicious sampling of soil and sediment during and immediately after high flow events 7Be measurements can augment fallout 137Cs and 210Pb to provide important erosion source information over large catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Gully rehabilitation can contribute to catchment management by stabilizing erosion and reducing downstream sediment yields, yet the globally observed responses are variable. Developing the technical basis for gully rehabilitation and establishing guidelines for application requires studies that evaluate individual rehabilitation measures in specific environments. An eight-year field experiment was undertaken to evaluate sediment yield and vegetation responses to several gully rehabilitation measures. The rehabilitation measures aimed to reduce surface runoff into gully head cuts, trap sediment on gully floors and increase vegetation cover on gully walls and floors. The study occurred in a savanna rangeland in northeast Australia. Two gullies were subject to treatments while four gullies were monitored as untreated controls. A runoff diversion structure reduced headcut erosion from 4.3 to 1.2 m2 yr−1. Small porous check dams and cattle exclusion reduced gully total sediment yields by more than 80%, equivalent to a reduction of 0.3 to 2.4 t ha−1 yr−1, but only at catchment areas less than 10 ha. Fine sediment yields (silt and clay) were reduced by 7 and 19% from the two treated gullies, respectively. The porous check dam deposits contained a lower percentage of the fine fraction than the parent soil. Significant regeneration of gully floor vegetation occurred, associated with trapping of organic litter and fine sediment. Increases in vegetation cover and biomass were comprised of native perennial grasses, trees and shrubs. In variable climates, long-term gully rehabilitation will progress during wetter periods, and regress during droughts. Understanding linkages between rehabilitation measures, their hydrologic, hydraulic and vegetation effects and gully sediment yields is important to defining the conditions for their success.  相似文献   

11.
Upper North Grain (UNG) is a heavily eroding blanket peat catchment in the Peak District, southern Pennines, UK. Concentrations of lead in the near‐surface peat layer at UNG are in excess of 1000 mg kg−1. For peatland environments, these lead concentrations are some of the highest globally. High concentrations of industrially derived, atmospherically transported magnetic spherules are also stored in the near‐surface peat layer. Samples of suspended sediment taken during a storm event that occurred on 1 November 2002 at UNG, and of the potential catchment sources for suspended sediments, were analysed for lead content and the environmental magnetic properties of anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM). At the beginning of the storm event, there is a peak in both suspended sediment and associated lead concentration. SIRM/ARM values for suspended sediment samples throughout the storm reveal that the initial ‘lead flush’ is associated with a specific sediment source, namely that of organic sediment eroded from the upper peat layer. Using the magnetic ‘fingerprinting’ approach to discrimination of sediment sources, this study reveals that erosion of the upper peat layer at UNG is releasing high concentrations of industrially derived lead (and, by inference, other toxic heavy metals associated with industrial particulates) into the fluvial systems of the southern Pennines. Climate‐change scenarios for the UK, involving higher summer temperatures and stormier winters, may result in an increased flux both of sediment‐associated and dissolved heavy metals from eroding peatland catchments in the southern Pennines, adversely affecting the quality of sediment and water entering reservoirs of the region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A three year monitoring programme of gully‐head retreat was established to assess the significance of sediment production in a drainage network that expanded rapidly by gully‐head erosion on the low‐angled alluvio‐lacustrine Njemps Flats in semi‐arid Baringo District, Kenya. This paper discusses the factors controlling the large observed spatial and temporal variation in gully‐head retreat rates, ranging from 0 to 15 m a?1. The selected gullies differed in planform and in runoff‐contributing catchment area but soil material and land use were similar. The data were analysed at event and annual timescales. The results show that at annual timescale rainfall amount appears to be a good indicator of gully‐head retreat, while at storm‐event timescale rainfall distribution has to be taken into account. A model is proposed, including only rainfall (P) and the number of dry days (DD) between storms: which explains 56 per cent of the variation in retreat rate of the single‐headed gully of Lam1. A detailed sediment budget has been established for Lam1 and its runoff‐contributing area (RCA). By measuring sediment input from the RCA, the sediment output by channelized flow and linear retreat of the gully head for nine storms, it can be seen that erosion shifts between different components of the budget depending on the duration of the dry period (DD) between storms. Sediment input from the RCA was usually the largest component for the smaller storms. The erosion of the gully head occurred as a direct effect of runoff falling over the edge (GHwaterfall) and of the indirect destabilization of the adjacent walls by the waterfall erosion and by saturation (GHmass/storage). The latter component (GHmass/storage) was usually much larger that the former (GHwaterfall). The sediment output from the gully was strongly related to the runoff volume while the linear retreat, because of its complex behaviour, was not. Overall, the results show that the annual retreat is the optimal timescale to predict retreat patterns. More detailed knowledge about relevant processes and interactions is necessary if gully‐head erosion is to be included in event‐based soil erosion models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Anthropogenic disturbance often increases surface erosion and this may have potential detrimental effects on downstream aquatic resources. Foot trails are often overlooked as they represent only a small fragment of the landscape, yet they can be important sources of sediment, particularly in pristine areas. The trail network above East End Bay on the island of St Croix in the US Virgin Islands is the sole anthropogenic source of terrestrial sediment in the area. Concern over the potential for trail erosion to stress nearshore coral reefs of the East End Marine Park led to trail reconstruction and restoration efforts. The objectives of this study were to: (1) quantify trail erosion rates; (2) identify key factors controlling erosion rates; (3) develop an empirical trail erosion model. Sediment production was measured from 12 trail segments with sediment traps from November 2009 to October 2011. Annual trail erosion rates ranged from 0.6 to 81 Mg ha?1 yr?1. The lower values were from abandoned trails with a dense vegetation cover, while the highest rates were associated with devegetated trails immediately following construction or restoration. Trail erosion was a function of rainfall, slope, and vegetation cover density raised to the negative 1.7th power. Annual trail erosion rates were one‐ to three‐orders of magnitude higher than measured surface erosion rates on undisturbed hillslopes. The absence of rills or gullies suggests that traditional parametric or repeated transect monitoring commonly used to assess trail erosion may greatly underestimate actual sediment production rates. The new empirical trail erosion model serves as a tool to assess the effects of trail construction and restoration activities in the generation of sediment from small catchments in East End Bay and in other similar settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Agricultural land abandonment is currently widely spread in Mediterranean countries and a further increase is expected. Previous research has shown that abandoned fields in semi‐arid areas are more vulnerable to gully erosion. The absence of ploughing and slow vegetation recovery cause the formation of soil crusts with low infiltration rates, resulting in increased runoff and gully erosion risk. The objective of our study was to assess the extent and causes of erosion and terrace failure on abandoned fields and to discuss options for mitigation. The study was carried out in the Carcavo basin, a semi‐arid catchment in southeast Spain. At catchment scale all abandoned fields were surveyed and characteristics of each field were described. Additionally we surveyed abandoned and cultivated terraces and used statistical analyses to determine the factors that induce terrace failure. At field scale we constructed a detailed digital elevation model (DEM) for an abandoned terrace field in order to calculate sediment losses since time of abandonment. The results revealed that more than half the abandoned fields had moderate to severe erosion and the statistical analysis showed that these fields had significantly steeper slopes, were terraced and had cereals as previous land use. Factors that increase the risk of terrace failure were land abandonment, steeper terrace slope, loam texture, valley‐bottom position and shrubs on the terrace wall. The reconstructed erosion rate (87 ton ha?1 year?1) confirmed the importance of gully erosion on these abandoned terrace fields. Potential soil and water conservation practices to mitigate soil erosion after abandonment are: (1) maintenance of terrace walls, as a result more water is retained, which increases vegetation cover and consequently decreases erosion. (2) Revegetation with indigenous grass species on spots with concentrated flow, especially near terrace walls. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
J. Holden  T. P. Burt 《水文研究》2002,16(13):2537-2557
Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3–12 mm h?1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low‐intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation‐excess overland flow generation. Rainfall–runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady‐state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Sediment delivery from hillslopes to trunk streams represents a significant pathway of mass transfer in the landscape, with a large fraction facilitated by gully systems. The internal gully geomorphic dynamics represent a considerable gap in many landscape and empirical erosion models, therefore a better understanding of these processes over longer timescales (10–104 years) is needed. This study analyses the sediment mass balance and storage dynamics within a headwater gully catchment in central Europe over the last ~12 500 years. Human induced erosion resulted in hillslope erosion rates ~2.3 times higher than under naturally de‐vegetated conditions (during the Younger Dryas), however the total sediment inputs to the gully system (and therefore gully aggradation), were similar. Net gully storage has consistently increased to become the second largest term in the sediment budget after hillslope erosion (storage is ~45% and ~73% of inputs during two separate erosion and aggradation cycles). In terms of the depletion of gully sediment storage, the sediment mass balance shows that export beyond the gully fan was not significant until the last ~500 years, due to reduced gully fan accommodation space. The significance of storage effects on the gully sediment mass balance, particularly the export terms, means that it would be difficult to determine the influences of human impact and/or climatic changes from floodplain or lake sedimentary archives alone and that the sediment budgets of the headwater catchments from which they drain are more likely to provide these mechanistic links. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Recent studies in the Mediterranean area have shown gully erosion to have a very significant contribution to total soil loss. In the Penedès vineyard region (NE Spain), between 15 and 27% of the land is affected by large gullies and gully‐wall retreat seems to be an ongoing process. Multi‐date digital elevation model (DEM) analysis has allowed computation of sediment production by gully erosion, showing that the sediment production rates are very high by the, up‐to‐date, usual global standards. Here, we present a study carried out using large‐scale multi‐date (1975 and 1995) aerial photographs (1 : 5000 and 1 : 7000) to monitor sediment yield caused by large gullies in the Penedès region (NE Spain). High‐resolution DEMs (1 m grid) were derived and analysed by means of geographical information systems techniques to determine the gully erosion rates. Rainfall characteristics within the same study period were also analysed in order to correlate with the soil loss produced. Mass movement was the main process contributing to total sediment production. This process could have been favoured by rainfalls recorded during the period: 58% of the events were of an erosive character and showed high kinetic energy and erosivity. A sediment production rate of 846 ± 40 Mg ha?1 year?1, a sediment deposition rate of 270 ± 18 Mg ha?1 year?1 and a sediment delivery ratio of 68·1% were computed for a gully area of 0·10 km2. The average net erosion within the study period (1975–95) was 576 ± 58 Mg ha?1 year?1. In comparison with other methods, the proposed method also includes sediment produced by processes other than only overland flow, i.e. downcutting, headcutting, and mass movements and bank erosion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Strong winds are a characteristic feature of UK upland areas. Despite this, understanding of aeolian processes in upland environments of the UK is limited. This paper presents direct measurements and observations of blanket peat erosion by wind action during a two week period of desiccation in the North Pennines, Northern England. A circular configuration of mass flux sediment samplers was used to collect peat eroded by wind action from 16 cardinal compass directions. Meteorological conditions (wind speed, wind direction, precipitation and temperature) were recorded by an automatic weather station set up adjacent to the site. Surface desiccation led to peat crust erosion and dust deflation. During short (≤1 hour) periods of precipitation, wind‐driven rainfall also caused erosion. Typically, dust flux rates were up to two orders of magnitude lower than recorded during periods of sustained wet weather. Measurements demonstrate the hitherto unreported rapid switch in process regime between wind‐driven rainfall and dry blow deflation in blanket peat environments. Dry blow processes of blanket peat erosion may become more important in UK upland areas if climate change promotes more frequent surface desiccation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号