首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
ABSTRACT

Understanding recharge processes is fundamental to improve sustainable groundwater resource management. Shallow groundwater (SGW) is being developed for multiple purposes in Ethiopia without consideration of monitoring. We established a citizen science-based hydro-meteorological monitoring network, with a focus on SGW recharge estimation, in Eshito micro-watershed, Ethiopia. Citizen scientists collected rainfall, groundwater-level and stream water-level data. We characterized the shallow aquifer using pumping tests. The data were used to estimate SGW recharge using three methods: chloride mass balance, water-level fluctuation (WLF) and baseflow separation. Approximately 20% and 35% of annual rainfall amount contributes to recharge based on the chloride mass balance and WLF results, respectively. Baseflow separation showed recharge values for the watershed vary from 38% to 28% of annual rainfall at the upstream and downstream gauging stations, respectively. This study shows that the recharge in previously unmonitored micro-watersheds can be studied if citizens are involved in data generation.  相似文献   

2.
ABSTRACT

This study presents a systematic illustration quantifying how misleading the calibration results of a groundwater simulation model can be when recharge rates are considered as the model parameters to be estimated by inverse modelling. Three approaches to recharge estimation are compared: autocalibration (Model 1), the empirical return coefficient method (Model 2), and distributed hydrological modelling using the Soil and Water Assessment Tool, SWAT (Model 3). The methodology was applied in the Dehloran Plain, western Iran, using the MODFLOW modular flow simulator and the PEST method for autocalibration. The results indicate that, although Model 1 performed the best in simulating water levels at observation wells in the calibration stage, it did not perform satisfactorily in real future scenarios. Model 3, with SWAT-based recharge rates, performed better than the other models in the validation stage. By not evaluating the model performance solely on calibration results, we demonstrate the relative significance of using more accurate recharge estimates when calibrating groundwater simulation models.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M. Besbes  相似文献   

3.
ABSTRACT

In this study, a multi-modelling approach is proposed for improved continuous daily streamflow estimation in ungauged basins using regionalization—the process of transferring hydrological data from gauged to ungauged watersheds. Four regionalization models, two data-driven and two hydrological, were used for continuous daily streamflow estimation. Comparison of the individual models reveals that each of the four models performed well on a limited number of ungauged basins while none of them performed well for the entire 90 selected watersheds. The results obtained from the four models are evaluated and reported in a deterministic way by a model combination approach along with its uncertainty range consisting of 16 ensemble members. It is shown that a combined model of the four individual models performed well on all 90 watersheds and the ensemble range can account for the uncertainty of models. The combined model was more efficient and appeared more robust compared to the individual models. Furthermore, continuous ranked probability scores (CRPS) calculated for the ensemble model outputs indicate better performance compared to individual models and competitive with the combined model.
EDITOR A. Castellarin ASSOCIATE EDITOR G. Di Baldassarre  相似文献   

4.
ABSTRACT

A model fusion approach was developed based on five artificial neural networks (ANNs) and MODIS products. Static and dynamic ANNs – the multi-layer perceptron (MLP) with one and two hidden layers, general regression neural network (GRNN), radial basis function (RBF) and nonlinear autoregressive network with exogenous inputs (NARX) – were used to predict the monthly reservoir inflow in Mollasadra Dam, Fars Province, Iran. Leaf area index and snow cover from MODIS, and rainfall and runoff data were used to identify eight different combinations to train the models. Statistical error indices and the Borda count method were used to verify and rank the identified combinations. The best results for individual ANNs were combined with MODIS products in a fusion model. The results show that using MODIS products increased the accuracy of predictions, with the MLP with two hidden layers giving the best performance. Also, the fusion model was found to be superior to the best individual ANNs.  相似文献   

5.
ABSTRACT

Groundwater-level time series often have a substantial number of missing values which should be taken into consideration before using them for further analysis, particularly for numerical groundwater flow modelling applications. This study aims to comprehensively compare two data-driven models, singular spectrum analysis (SSA) and multichannel spectrum analysis (MSSA), to reconstruct groundwater-level time series and impute the missing values for 25 piezometric stations in Ardabil Plain, northwest Iran. The reconstructed groundwater-level time series are assessed against the complete observed groundwater time series, while the imputed values are appraised against the artificially created gap values. The results show that both SSA and MSSA demonstrate a solid competency in imputation and reconstruction of groundwater-level data. However, depending on the spatial correlation between the piezometers, and the most suitable probability distribution function (pdf) fitted to the time series of each piezometer, the performance may vary from piezometer to piezometer.  相似文献   

6.
ABSTRACT

A forecasting model is developed using a hybrid approach of artificial neural network (ANN) and multiple regression analysis (MRA) to predict the total typhoon rainfall and groundwater-level change in the Zhuoshui River basin. We used information from the raingauge stations in eastern Taiwan and open source typhoon data to build the ANN model for forecasting the total rainfall and the groundwater level during a typhoon event; then we revised the predictive values using MRA. As a result, the average accuracy improved up to 80% when the hybrid model of ANN and MRA was applied, even where insufficient data were available for model training. The outcome of this research can be applied to forecasts of total rainfall and groundwater-level change before a typhoon event reaches the Zhuoshui River basin once the typhoon has made landfall on the east coast of Taiwan.  相似文献   

7.
Abstract

Abstract Land development often results in adverse environmental impact for surface and subsurface water systems. For areas close to the coast, land changes may also result in seawater intrusion into coastal aquifers. Due to this, it is important to evaluate potential adverse effects in advance of any land development. For evaluation purposes a combined groundwater recharge model is proposed with a quasi three-dimensional unconfined groundwater flow equation. The catchment water balance for a planned new campus area of Kyushu University in southern Japan, was selected as a case study to test the model approach. Since most of the study area is covered with forest, the proposed groundwater recharge model considers rainfall interception by forest canopy. The results show that simulated groundwater and surface runoff agree well with observations. It is also shown that actual evapotranspiration, including rainfall interception by forest canopy, is well represented in the proposed simulation model. Several hydrological components such as direct surface runoff rate, groundwater spring flow rate to a ground depression, trans-basin groundwater flow etc., were also investigated.  相似文献   

8.
A numerical surface-water/groundwater model was developed for the lower San Antonio River Basin to evaluate the responses of low base flows and groundwater levels within the basin under conditions of reduced recharge and increased groundwater withdrawals. Batch data assimilation through history matching used a simulation of historical conditions (2006-2013); this process included history-matching to groundwater levels and base-flow estimates at several gages, and was completed in a high-dimensional (highly parameterized) framework. The model was developed in an uncertainty framework such that parameters, observations, and scenarios of interest are envisioned stochastically as distributions of potential values. Results indicate that groundwater contributions to surface water during periods of low flow may be reduced from 6% to 25% with a corresponding 25% reduction in recharge and a 25% increase in groundwater pumping over an 8-year planning period. Furthermore, results indicate groundwater-level reductions in some hydrostratigraphic units are more likely than in other hydrostratigraphic units over an 8-year period under drought conditions with the higher groundwater withdrawal scenario.  相似文献   

9.
We present a methodology for global optimal design of ground water quality monitoring networks using a linear mixed-integer formulation. The proposed methodology incorporates ordinary kriging (OK) within the decision model formulation for spatial estimation of contaminant concentration values. Different monitoring network design models incorporating concentration estimation error, variance estimation error, mass estimation error, error in locating plume centroid, and spatial coverage of the designed network are developed. A big-M technique is used for reformulating the monitoring network design model to a linear decision model while incorporating different objectives and OK equations. Global optimality of the solutions obtained for the monitoring network design can be ensured due to the linear mixed-integer programming formulations proposed. Performances of the proposed models are evaluated for both field and hypothetical illustrative systems. Evaluation results indicate that the proposed methodology performs satisfactorily. These performance evaluation results demonstrate the potential applicability of the proposed methodology for optimal ground water contaminant monitoring network design.  相似文献   

10.
A system identification approach can be incorporated in groundwater time series analysis, revealing information concerning the local hydrogeological situation. The aim of this work was to analyse water table fluctuations in an outcrop area of the Guarani Aquifer System (GAS) in Brotas/SP, Brazil, using data from a groundwater monitoring network. The water table dynamic was modelled using continuous time series models that reference the hydrogeological system upon which they operate. The model’s climatological inputs of precipitation and evapotranspiration generate impulse response (IR) functions with parameters that can be related to the physical conditions concerning the hydrological processes involved. The interpretation of the model parameters from two sets of monitoring wells selected at different land-use sites is presented, exemplifying the effect of different water table depths and the distance to the nearest drainage location. Systematic trends of water table depths were also identified from model parameters at specific periods and related to plant development, crop harvest and land-use changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

11.
The quantification of groundwater recharge is an important but challenging task in groundwater flow modeling because recharge varies spatially and temporally. The goal of this study is to present an innovative methodology to estimate groundwater recharge rates and zone structures for regional groundwater flow models. Here, the unknown recharge field is partitioned into a number of zones using Voronoi Tessellation (VT). The identified zone structure with the recharge rates is associated through a simulation‐optimization model that couples MODFLOW‐2000 and the hybrid PSOLVER optimization algorithm. Applicability of this procedure is tested on a previously developed groundwater flow model of the Tahtal? Watershed. Successive zone structure solutions are obtained in an additive manner and penalty functions are used in the procedure to obtain realistic and plausible solutions. One of these functions constrains the optimization by forcing the sum of recharge rates for the grid cells that coincide with the Tahtal? Watershed area to be equal to the areal recharge rate determined in the previous modeling by a separate precipitation‐runoff model. As a result, a six‐zone structure is selected as the best zone structure that represents the areal recharge distribution. Comparison to results of a previous model for the same study area reveals that the proposed procedure significantly improves model performance with respect to calibration statistics. The proposed identification procedure can be thought of as an effective way to determine the recharge zone structure for groundwater flow models, in particular for situations where tangible information about groundwater recharge distribution does not exist.  相似文献   

12.
J.J. Yu 《水文科学杂志》2013,58(12):2117-2131
Abstract

A generalized likelihood uncertainty estimation (GLUE) framework coupling with artificial neural network (ANN) models in two surrogate schemes (i.e. GAE-S1 and GAE-S2) was proposed to improve the efficiency of uncertainty assessment in flood inundation modelling. The GAE-S1 scheme was to construct an ANN to approximate the relationship between model likelihoods and uncertain parameters for facilitating sample acceptance/rejection instead of running the numerical model directly; thus, it could speed up the Monte Carlo simulation in stochastic sampling. The GAE-S2 scheme was to establish independent ANN models for water depth predictions to emulate the numerical models; it could facilitate efficient uncertainty analysis without additional model runs for locations concerned under various scenarios. The results from a study case showed that both GAE-S1 and GAE-S2 had comparable performances to GLUE in terms of estimation of posterior parameters, prediction intervals of water depth, and probabilistic inundation maps, but with reduced computational requirements. The results also revealed that GAE-S1 possessed a slightly better performance in accuracy (referencing to GLUE) than GAE-S2, but a lower flexibility in application. This study shed some light on how to apply different surrogate schemes in using numerical models for uncertainty assessment, and could help decision makers in choosing cost-effective ways of conducting flood risk analysis.  相似文献   

13.
ABSTRACT

In order to understand and adequately manage hydrological stress, it is necessary to simulate groundwater levels accurately. In this research, gene expression programming (GEP) and M5 model tree (M5) are used to simulate monthly groundwater levels. The models are combined with wavelet transform to produce two hybrid models: wavelet gene expression programming (WGEP) and wavelet M5 model tree (WM5). For the simulation, groundwater level, temperature and precipitation values from three observation wells and one meteorological station, located in Iran, are used. The results indicate that the hybrid models, WGEP and WM5, lead to a better performance than the simple models, GEP and M5. The performance of the two hybrid models is similar. It is also observed that selecting a suitable time lag for inputs plays an important role in the accuracy of the simple models. The selection of a suitable decomposition level strongly affects the accuracy of hybrid models.  相似文献   

14.
ABSTRACT

This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts, with a particular focus on groundwater aspects from a number of coordinated studies in Denmark. Our results are similar to those from surface water studies showing that climate model uncertainty dominates the results for projections of climate change impacts on streamflow and groundwater heads. However, we found uncertainties related to geological conceptualization and hydrological model discretization to be dominant for projections of well field capture zones, while the climate model uncertainty here is of minor importance. How to reduce the uncertainties on climate change impact projections related to groundwater is discussed, with an emphasis on the potential for reducing climate model biases through the use of fully coupled climate–hydrology models.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

15.
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data‐worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south‐western Germany, which has been established to monitor river—groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model‐based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy‐to‐implement tools for an otherwise complex task and (2) yet to consider data‐worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types.  相似文献   

16.
This study introduces Bayesian model averaging (BMA) to deal with model structure uncertainty in groundwater management decisions. A robust optimized policy should take into account model parameter uncertainty as well as uncertainty in imprecise model structure. Due to a limited amount of groundwater head data and hydraulic conductivity data, multiple simulation models are developed based on different head boundary condition values and semivariogram models of hydraulic conductivity. Instead of selecting the best simulation model, a variance-window-based BMA method is introduced to the management model to utilize all simulation models to predict chloride concentration. Given different semivariogram models, the spatially correlated hydraulic conductivity distributions are estimated by the generalized parameterization (GP) method that combines the Voronoi zones and the ordinary kriging (OK) estimates. The model weights of BMA are estimated by the Bayesian information criterion (BIC) and the variance window in the maximum likelihood estimation. The simulation models are then weighted to predict chloride concentrations within the constraints of the management model. The methodology is implemented to manage saltwater intrusion in the “1,500-foot” sand aquifer in the Baton Rouge area, Louisiana. The management model aims to obtain optimal joint operations of the hydraulic barrier system and the saltwater extraction system to mitigate saltwater intrusion. A genetic algorithm (GA) is used to obtain the optimal injection and extraction policies. Using the BMA predictions, higher injection rates and pumping rates are needed to cover more constraint violations, which do not occur if a single best model is used.  相似文献   

17.
Abstract

A continuous simulation rainfall-streamflow modelling approach that identifies unit hydrographs for total streamflow has been applied to an 11-year record from a national hydrometric monitoring network catchment in the UK. The model is of the parametrically parsimonious conceptual model (PPCM) type that can make efficient use of rainfall, streamflow and air temperature data readily available from established national and regional monitoring networks. A multiple split-sample model calibration and simulation analysis is presented that reveals some guiding principles for calibrating and applying PPCMs generally. The inadequacy of a one-dimensional objective function for calibrating best PPCMs is demonstrated. A two-dimensional objective function approach is superior but is shown to be unreliable in some cases, confirming the need for additional critical inspection of other model performance statistics, model parameters and time series plots as an integral part of the model calibration process. A strong tendency evident from the multiple split-sample analysis is that, for the catchment studied, models that fit relatively well in calibration mode perform relatively poorly in simulation mode.  相似文献   

18.
Forecasting of space–time groundwater level is important for sparsely monitored regions. Time series analysis using soft computing tools is powerful in temporal data analysis. Classical geostatistical methods provide the best estimates of spatial data. In the present work a hybrid framework for space–time groundwater level forecasting is proposed by combining a soft computing tool and a geostatistical model. Three time series forecasting models: artificial neural network, least square support vector machine and genetic programming (GP), are individually combined with the geostatistical ordinary kriging model. The experimental variogram thus obtained fits a linear combination of a nugget effect model and a power model. The efficacy of the space–time models was decided on both visual interpretation (spatial maps) and calculated error statistics. It was found that the GP–kriging space–time model gave the most satisfactory results in terms of average absolute relative error, root mean square error, normalized mean bias error and normalized root mean square error.  相似文献   

19.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

20.
Mapping groundwater quality in the Netherlands   总被引:4,自引:0,他引:4  
Maps of 25 groundwater quality variables were obtained by estimating 4 km × 4 km block median concentrations. Estimates were presented as approximate 95% confidence intervals related to four concentration levels mostly obtained from critical levels for human consumption. These maps were based on measurements from 425 monitoring sites of national and provincial groundwater quality monitoring networks. The estimation procedure was based on a stratification by soil type and land use. Within each soil-land use category, measurements were interpolated. Spatial dependence between measurements and regional differences in mean level were taken into account. Stratification turned out to be essential: no or partial stratification (using either soil type or land use) results in essentially different maps. The effect of monitoring network density was studied by leaving out the 173 monitoring sites of the provincial monitoring networks. Important changes in resulting maps were assigned to loss of information on short-distance variation, as well as loss of location-specific information. For 12 variables, maps of changes in groundwater quality were made by spatial interpolation of short-term predictions calculated for each well screen from time series of yearly measurements over 5–7 years, using a simple regression model for variation over time and taking location-specific time-prediction uncertainties into account.

From a policy point of view, the resulting maps can be used either for quantifying diffuse groundwater contamination and location-specific background concentrations (in order to assist local contamination assessment) or for input and validation of policy supporting regional or national groundwater quality models. The maps can be considered as a translation of point information obtained from the monitoring networks into information on spatial units, the size of which is used in regional groundwater models. The maps enable location-specific network optimization. In general, the maps give little reason for reducing the monitoring network density (wide confidence intervals).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号