首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper addresses the question of how spatial variability in the hydraulic and chemical properties of groundwater systems affects the transport and sorption behavior of pollutants at the field scale. In this paper, we limit our investigations on pollutants that adsorb according to an equilibrium controlled nonlinear Freundlich sorption isotherm. The new contribution of this paper is take into account not only spatially variable Freundlich distribution coefficients KSKS but spatially variable Freundlich nonlinearity parameters p as well. Using a homogenization theory approach, we shortly review the impact of spatially variable hydraulic properties on the transport and extend the theory to spatially variable chemical properties. We show that spatially variable Freundlich exponents cause a very different field scale transport and sorption behavior than spatial variations in the distribution coefficients only since in the first case field scale Freundlich parameters and field scale dispersion coefficients become concentration dependent. In particular, field scale retardation is much larger than small-scale retardation.  相似文献   

3.
We analyze the impact of conditioning to measurements of hydraulic transmissivity on the transport of a conservative solute. The effects of conditioning on solute transport are widely discussed in the literature, but most of the published works focuses on the reduction of the uncertainty in the prediction of the plume dispersion. In this study both ensemble and effective plume moments are considered for an instantaneous release of a solute through a linear source normal to the mean flow direction, by taking into account different sizes of the source. The analysis, involving a steady and spatially inhomogeneous velocity field, is developed by using the stochastic finite element method. Results show that conditioning reduces the ensemble moment in comparison with the unconditioned case, whereas the effective dispersion may increase because of the contribution of the spatial moments related to the lack of stationarity in the flow field. As the number of conditioning points increases, this effect increases and it is significant in both the longitudinal and transverse directions. Furthermore, we conclude that the moment derived from data collected in the field can be assessed by the conditioned second-order spatial moment only with a dense grid of measured data, and it is manifest for larger initial lengths of the plume. Nevertheless, it seems very likely that the actual dispersion of the plume may be underestimated in practical applications.  相似文献   

4.
I. Haltas 《水文研究》2012,26(22):3448-3458
Recognizing the spatial heterogeneity of hydraulic parameters, many researchers have studied the solute transport by both groundwater and channel flow in a stochastic framework. One of the methodologies used to up‐scale the stochastic solute transport equation, from a point‐location scale to a grid scale, is the cumulant expansion method combined with the calculus for the time‐ordered exponential and the calculus for the Lie operator. When the point‐location scale transport equation is scaled up to the grid scale, using the cumulant expansion method, a new dispersion coefficient emerges in the dispersive term of the solute transport equation in addition to the molecular dispersion coefficient. This velocity driven dispersion is called ‘macrodispersion’. The macrodispersion coefficient is the integral function of the time‐ordered covariance of the random velocity field. The integral is calculated over a Lagrangian trajectory of the flow. The Lagrangian trajectory depends on the following: (i) the spatial origin of the particle; (ii) the time when the macrodispersion is calculated; and (iii) the mean velocity field along the trajectory itself. The Lagrangian trajectory is a recursive function of time because the location of the particle along the trajectory at a particular time depends on the location of the particle at the previous time. This recursive functional form of the Lagrangian trajectory makes the calculation of the macrodispersion coefficient difficult. Especially for the unsteady, spatially non‐stationary, non‐uniform flow field, the macrodispersion coefficient is a highly complex expression and, so far, calculated using numerical methods in the discrete domains. Here, an analytical method was introduced to calculate the macrodispersion coefficient in the discrete domain for the unsteady and steady, spatially non‐stationary flow cases accurately and efficiently. This study can fill the gap between the theory of the ensemble averaged solute transport model and its numerical implementations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Transport of sorbing solutes in 2D steady and heterogeneous flow fields is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a finite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper addresses the impact of the degree of heterogeneity and correlation lengths of the log-hydraulic conductivity field as well as negative correlation between the log-hydraulic conductivity field and the log-sorption affinity field on the behavior of the plume of a sorbing chemical. Behavior of the plume is quantified in terms of longitudinal spatial moments: center-of-mass displacement, variance, 95% range, and skewness. The range appears to be a better measure of the spread in the plumes with Freundlich sorption because of plume asymmetry. It has been found that the range varied linearly with the travelled distance, regardless of the sorption isotherm. This linear relationship is important for extrapolation of results to predict behavior beyond simulated times and distances. It was observed that the flow domain heterogeneity slightly enhanced the spreading of nonlinearly sorbing solutes in comparison to that which occurred for the homogeneous flow domain, whereas the spreading enhancement in the case of linear sorption was much more pronounced. In the case of Freundlich sorption, this enhancement led to further deceleration of the solute plume movement as a result of increased retardation coefficients produced by smaller concentrations. It was also observed that, except for plumes with linear sorption, correlation between the hydraulic conductivity and the sorption affinity fields had minimal effect on the spatial moments of solute plumes with nonlinear sorption.  相似文献   

6.
We analyze the impact of a linear trend in the mean log-conductivity on the transport of a conservative tracer in a bounded domain. The effects of such a linear trend on solute transport were analyzed in depth for unbounded domains (Rubin and Seong, Water Resour Res 30(11):2901–2911, 1994; Indelman and Rubin, Water Resour Res 31(5):1257–1265, 1995; Water Resour Res 32(5):1257–1265, 1996), whereas studies concerning this special case of medium nonstationarity in finite domains usually focus on head or flow statistics (Guadagnini et al., Stoch Environ Res Risk Assess, 17:394–407, 2003). In this study both ensemble and effective plume moments are provided for an instantaneous release of a solute through a linear source normal to the mean flow direction, by taking into account different sizes of the source. The analysis involving a steady velocity field spatially nonstationary is developed by using the stochastic finite element method. Results show that ensemble moments are affected by increasing trends both parallel and normal to the mean flow direction, but the impact on effective plume moments is very different. A parallel trend does not seem to influence the effective second moments; while a normal trend, although modifies the transverse effective moment only weakly, strongly increases the longitudinal one, especially for large initial sizes of the source. Furthermore, the increase of the particle displacement variance produced by a parallel trend in the finite domain disagrees with the results obtained in an unbounded domain, due to the boundary conditions here considered making both head and velocity moments nonstationary and nonsymmetric.  相似文献   

7.
One of the main assumptions that renders the stochastic theories applicable to real aquifers is the ergodic hypothesis, i.e. the possibility to exchange ensemble and spatial averages of a variable of interest. The principal aim of this paper is to elucidate the conditions that allow for an exchange between ensemble and spatially averaged second moments of concentration field (Sij); the fulfillment of the ergodic condition underlies the applicability of the dispersion coefficients or other related quantities obtained by the stochastic theories to actual aquifers. The fulfillment of the ergodic hypothesis is assessed here by analyzing the diminishing of the variance of Sij as the initial size of the plume V0 grows, i.e. the tendency of Sij toward its expected value 〈Sij〉. It is shown that it is not always possible to assume ergodicity for solute plumes in heterogeneous aquifers. For the typical plume configurations encountered in applications, transverse and vertical spreading are the most problematic in this respect. In particular, satisfying the ergodic hypothesis depends largely on the initial plume configuration and size, on one hand, and the direction of the moment of interest, on the other. Numerical simulations based on the analytic element method elucidate the results. The relevance of the results is mostly felt for the inference of macrodispersive parameters, which are often derived through Sij. The work indicates that Sij may be a distorted and inadequate measure of the plume spread. This should serve as a warning against application of results based on ensemble averages to real-life plumes, particularly when estimating macrodispersion coefficient from field experiment.  相似文献   

8.
Transport of a sorbing solute in a two-dimensional steady and uniform flow field is modeled using a particle tracking random walk method. The solute is initially introduced from an instantaneous point source. Cases of linear and nonlinear sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. The numerical simulation of solute particle transport yields the large scale behavior of the solute plume. Behavior of the plume is quantified in terms of the center-of-mass displacement distance, relative velocity of the center-of-mass, mass breakthrough curves, spread variance, and longitudinal skewness. The nonlinear sorption isotherm affects the plume behavior in the following way relative to the linear isotherm: (1) the plume velocity decreases exponentially with time; (2) the longitudinal variance increases nonlinearly with time; (3) the solute front is steepened and tailing is enhanced  相似文献   

9.
Solute discharge moments (mean and variance) are computed using numerical modeling of flow and advective transport in two-dimensional heterogeneous aquifers and are compared to theoretical results. The solute discharge quantifies the temporal evolution of the total contaminant mass crossing a certain compliance boundary. In addition to analyzing the solute discharge moments within a classical absolute dispersion framework, we also analyze relative dispersion formulation, whereby plume meandering (deviation from mean flow path caused by velocity variations at scales larger than plume size) is removed. This study addresses some important issues related to the computation of solute discharge moments from random walk particle tracking experiments, and highlights some of the important differences between absolute and relative dispersion frameworks. Relative dispersion formulation produces maximum uncertainty that coincides with the peak mean discharge. Absolute dispersion, however, results in earlier arrival of the uncertainty peak as compared to the first moment peak. Simulations show that the standard deviation of solute discharge in a relative dispersion framework requires increasingly large temporal sampling windows to smooth out some of the large fluctuations in breakthrough curves associated with advective transport. Using smoothing techniques in particle tracking to distribute the particle mass over a volume rather than at a point significantly reduces the noise in the numerical simulations and removes the need to use large temporal windows. Same effect can be obtained by adding a local dispersion process to the particle tracking experiments used to model advective transport. The effect of the temporal sampling window bears some relevance and important consequences for evaluating risk-related parameters. The expected value of peak solute discharge and its standard deviation are very sensitive to this sampling window and so will be the risk distribution relying on such numerical models.  相似文献   

10.
Solute plume spreading in an aquifer exhibits a ‘scale effect’ if the second spatial concentration moment of a plume has a non-constant time-derivative. Stochastic approaches to modeling this scale effect often rely on the critical assumption that ensemble averages can be equated to spatial averages measured in a single field experiment. This ergodicity assumption should properly be evaluated in a strictly dynamical context, and this is done in the present paper. For the important case of trace plume convection by steady groundwater flow in an isotropic, heterogeneous aquifer, ergodicity does not obtain because of the existence of an invariant function on stream surfaces that is not uniform throughout the aquifer. The implications of this result for stochastic models of solute transport are discussed. © 1997 Elsevier Science Ltd. All rights reserved  相似文献   

11.
12.
A comprehensive numerical study was undertaken to investigate transport of a variable-density, conservative solute plume in an unconfined coastal aquifer subject to high and low frequency oceanic forcing. The model combined variable-density saturated flow for groundwater and solute transport, and wave hydrodynamics from a 2D Navier–Stokes solver. A sinusoidal tidal signal was specified by implementing time-varying heads at the seaward boundary. The solute plume behavior was investigated under different oceanic forcing conditions: no forcing, waves, tide, and combined waves and tide. For each forcing condition, four different injected solute densities (freshwater, brackish water, seawater, brine) were used to investigate the effects of density on the transport of the injected plume beneath and across the beach face. The plume’s low-order spatial moments were computed, viz., mass, centroid, variance and aspect ratio. The results confirmed that both tide- and wave-forcing produce an upper saline plume beneath the beach face in addition to the classical saltwater wedge. For the no-forcing and tide-only cases (during rising tides), an additional small circulation cell below the beach face was observed. Oceanic forcing affects strongly the solute plume’s flow path, residence time and discharge rate across the beach face, as well as its spreading. For the same oceanic forcing, solute plumes with different densities follow different trajectories from the source to the discharge location (beach face). The residence time and plume spreading increased with plume density. It was concluded that simulations that neglect the effect of waves or tides cannot reproduce accurately solute plume dispersion and also, in the case of coasts with small waves or tides, the solute residence time in the aquifer.  相似文献   

13.
14.
We consider colloid facilitated radionuclide transport by steady groundwater flow in a heterogeneous porous formation. Radionuclide binding on colloids and soil-matrix is assumed to be kinetically/equilibrium controlled. All reactive parameters are regarded as uniform, whereas the hydraulic log-conductivity is modelled as a stationary random space function (RSF). Colloid-enhanced radionuclide transport is studied by means of spatial moments pertaining to both the dissolved and colloid-bounded concentration. The general expressions of spatial moments for a colloid-bounded plume are presented for the first time, and are discussed in order to show the combined impact of sorption processes as well as aquifer heterogeneity upon the plume migration. For the general case, spatial moments are defined by the aid of two characteristic reaction functions which cannot be expressed analytically. By adopting the approximation for the longitudinal fluid trajectory covariance valid for a flow parallel to the formation bedding suggested by Dagan and Cvetkovic [Dagan G, Cvetkovic V. Spatial Moments of Kinetically Sorbing Plume in a Heterogeneous Aquifers. Water Resour Res 1993;29:4053], we obtain closed form solutions.  相似文献   

15.
The spatial moments of a contaminant plume undergoing bio-attenuation are coupled to the moments of microbial populations effecting that attenuation. In this paper, a scalable inverse method is developed for estimating field-scale Monod parameters such as the maximum microbial growth rate (μmax), the contaminant half saturation coefficient (Ks), and the contaminant yield coefficient (Ys). The method uses spatial moments that characterize the distribution of dissolved contaminant and active microbial biomass in the aquifer. A finite element model is used to generate hypothetical field-scale data to test the method under both homogeneous and heterogeneous aquifer conditions. Two general cases are examined. In the first, Monod parameters are estimated where it is assumed a microbial population comprised of a single bacterial species is attenuating one contaminant (e.g., an electron donor and an electron acceptor). In a second case, contaminant attenuation is attributed to a microbial consortium comprised of two microbial species, and Monod parameters for both species are estimated. Results indicate the inverse method is only slightly sensitive to aquifer heterogeneity and that estimation errors decrease as the sampling time interval decreases with respect to the groundwater travel time between sample locations. Optimum conditions for applying the scalable inverse method in both space and time are investigated under both homogeneous and heterogeneous aquifer conditions.  相似文献   

16.
Fundamental concepts of exchange and transport time scales in a coastal sea   总被引:1,自引:0,他引:1  
Concepts of age, residence time, transit time, and turn-over time are summarized which are useful for describing the exchange and transport of water or materials in a coastal sea. The age of a particle is defined as a time which has elapsed since it entered the reservoir, and the residence time is defined as a time which will be taken for a particle to reach the outlet. Time scales based on the age are simply related with those based on the residence time. It is shown that a suitable time scale for representing the exchange characteristics is the average residence time and not the turnover time, which has often been used as the exchange time scale. Further, the ‘remnant function’ which describes the phenomena of exchange or transport is introduced, and is related to the residence time. Exchange and transport time scales in a coastal sea are discussed on the basis of the residence time which can be applied to not only steady-state cases, but also the cases where material is injected instantaneously. The average residence time in a one-dimensional channel and bay is obtained from the solutions of the advection-diffusion equation. If we know a flow speed and diffusion coefficient in a channel or bay regarded as one-dimensional, we can translate them into the average residence time. As an example, the average residence time of the Seto Inland Sea is discussed.  相似文献   

17.
The concentration fluctuations resulting from hazardous releases in the subsurface are modeled through the concentration moments. The local solute exposure concentration, resulting from the heterogeneous velocity field and pore scale dispersion in the subsurface, is a random function characterized by its statistical moments. The approximate solution to the exact equation that describes the evolution of concentration standard moments in the aquifer transport is proposed in a recursive form. The expressions for concentration second, third and fourth central moments are derived and evaluated for various flow and transport conditions. The solutions are sought by starting from the exact upper bound solution with the zero pore scale dispersion and introducing the physically based approximation that allows the inclusion of the pore scale dispersion resulting in simple closed-form expressions for the concentration statistical moments. The concentration moments are also analyzed in the relative and absolute frame of reference indicating their combined importance in the practical cases of the subsurface contaminant plume migration. The influence of pore scale dispersion with different source sizes and orientations are analyzed and discussed with respect to common cases in the environmental risk assessment problems. The results are also compared with the concentration measurements of the conservative tracer collected in the field experiments at Cape Cod and Borden Site.  相似文献   

18.
Vertical profiles of dissolved and particulate Mn, Fe, Ni, Cu, Zn, Cd, Pb, and (234)Th were determined in the Hung-Tsai Trough off southwestern Taiwan during 19-23 November, 2004. Except in the case of Cd, the distribution coefficient (K(d)) of the trace elements showed a negative correlation with the suspended particle concentration. Based on the average K(d) values, the general sequence of particle affinities for the eight trace elements is, from highest to lowest, Fe>Mn≈Pb>Zn≈Th>Cd≈Cu≈Ni. The trace metal data was coupled with the particle removal flux estimated from (234)Th/(238)U disequilibrium to investigate metal removal by particle sinking from the euphotic layer. The residence time of trace elements with respect to particle removal from the euphotic layer was estimated. A negative correlation between the residence time and the distribution coefficient for the trace metals was found.  相似文献   

19.
A Lagrangian perturbation method is applied to develop a method of moments for solute flux through a three-dimensional nonstationary flow field. The flow nonstationarity stems from medium nonstationarity and internal and external boundaries of the study domain. The solute flux is described as a space-time process where time refers to the solute flux breakthrough through a control plane (CP) at some distance downstream of the solute source and space refers to the transverse displacement distribution at the CP. The analytically derived moment equations for solute transport in a nonstationarity flow field are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. This approach combines the stochastic model with the flexibility of the numerical method to boundary and initial conditions. The developed method is applied to study the effects of heterogeneity and nonstationarity of the hydraulic conductivity and chemical sorption coefficient on solute transport. The study results indicate all these factors will significantly influence the mean and variance of solute flux.  相似文献   

20.
Computer-assisted image analysis data of rock fabrics from two quaternary ignimbrites in the Vulsini and Cimini Volcanic Districts of Central Italy are interpreted in terms of transport and depositional mechanisms. Samples were collected vertically at m spaces up two sections through each deposit. The Orvieto–Bagnoregio ignimbrite (OBI) is a non-welded ignimbrite that shows both fluctuations in the mean particle orientation values of up to approximately ±60°, and large variations in the strength of particle iso-orientation with height. The circular frequency distributions of particle orientations are almost always anisotropic and unimodal, in line with a theoretical Von Mises distribution (the circular equivalent of a unimodal, log–normal distribution). In contrast, the welded Cimina ignimbrite (CI) shows vertical homogeneities in mean orientation values with height, and generally lower degrees of anisotropy. Such differences are interpreted as being the results of different depositional mechanisms: incremental deposition at the base of a density-stratified, partially turbulent flow for the OBI; deposition of a laminar mass flow for the CI. In the former case, during transport particles under solidus temperature are subjected to a frictional regime, particles gliding and dispersive pressures, which finally produce size-inverse grading and variable fabric development, depending on the residence time of particles at the basal shear conditions. In the latter case, elongated particles, supported in a laminar flowing viscous matrix, undergo periodic motions which tend to develop parallel-to-flow iso-orientation. Fabric data in the deposit suggest vertical constancy in the rheological properties of the flow, absence of rheological decoupling and (shearing pervasively during transport) a minor importance of plug horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号