首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
利用1999-2007和2009-2011年中国大陆GPS水平速度场数据, 采用DEFNODE(反演计算弹性岩石圈块体旋转、 应变和块体边界断层闭锁或同震滑动的Fortran程序)负位错反演程序估算了芦山地震前龙门山断裂带的三维闭锁程度, 并结合剖面结果分析了断层深浅部变形特征. GPS反演结果表明, 1999-2007年, 龙门山断裂中北段(闭锁比例为0.99)处于强闭锁(本文将闭锁比例大于0.97的称为强闭锁)状态; 龙门山断裂南段地表以下深度16 km内为强闭锁, 深度16-21 km处闭锁比例降低为0.62, 深度21-24 km处整条断裂逐渐转变为蠕滑状态. 2009-2011年, 即汶川地震后, 龙门山断裂中北段处于震后蠕滑状态; 龙门山断裂南段深度16-21 km处闭锁比例降低为0.45, 其它位置闭锁程度保持不变. GPS剖面结果显示, 2009-2011年, 即汶川地震后, 龙门山断裂中北段为逆冲兼右旋走滑运动; 而南段断层不能自由滑动、 变形宽度较大. 综合分析认为, 汶川地震时, 龙门山断裂南段并没有发生破裂, 一直处于较强的闭锁状态, 汶川地震的发生又加速了芦山地震的孕育进程; 由于龙门山断裂带南段的闭锁深度较中北段浅, 因此芦山地震较汶川地震强度低、 震级小、 破裂范围窄.   相似文献   

2.
利用青藏高原东北缘及周缘地区1999—2007年和2009—2014年2个时段的GPS水平运动速度场做约束,反演获取了海原-六盘山断裂带的闭锁程度和滑动速率亏损的时空分布演化。结果表明,海原断裂带以左旋走滑亏损为主,六盘山断裂北段以逆冲倾滑速率亏损为主,南段则以正向倾滑为主。其中,毛毛山断裂和老虎断裂西段在2个时段的闭锁深度都达到25km,最大左旋滑动亏损为6mm/a。老虎山东段和海原断裂(狭义)闭锁程度低,主要处于蠕滑状态。六盘山断裂2个时段的闭锁深度可达35km,最大逆冲滑动速率亏损为2mm/a。汶川地震后,六盘山断裂上逆冲滑动速率亏损高值区由中段迁移至北段且范围减小,南段则变成正倾滑速率亏损。毛毛山、老虎山西段和六盘山断裂的地震危险性要明显高于海原-六盘山断裂带其他断层段。  相似文献   

3.
本文利用1997—2008年5月的汶川M_w7.9地震前川滇地区GPS水平速度场数据,采用负位错理论反演了汶川M_w7.9地震前龙门山断裂带的闭锁程度.在顾及断层闭锁影响下,获得了龙门山断裂带区域震前十年间地壳应变率场.结果表明在汶川地震前龙门山断裂带高度闭锁,在地表以下0~25 km范围内其平均闭锁程度为0.972±0.222,滑动亏损速率约为3 mm·a~(-1).震前龙门山断裂滑脱层的高度闭锁为汶川地震深部同震破裂提供了能量基础;在顾及断层闭锁影响下,龙门山断裂带附近应变积累缓慢,断层附近区域最大主应变率约为3.4~9.6 nanostrain·a~(-1),最小主应变率约为-2.5~-7.1 nanostrain·a~(-1);断层西北侧有明显的应变积累.  相似文献   

4.
用GPS数据反演海原断裂带断层滑动速率和闭锁深度   总被引:7,自引:1,他引:6       下载免费PDF全文
以"中国地壳运动观测网络"区域站在海原断裂带附近的所有观测数据及跨断裂GPS剖面观测数据作为约束,用Smith 3-D体力模型反演了海原断裂带断层滑动速率和断层闭锁深度.从西到东断裂共分为5段,采用遗传算法拟合GPS水平运动速度场,拟合残差均方根为1.1 mm/a.反演结果为:毛毛山断裂左旋走滑运动速率为3.5 mm/a,闭锁深度为22.0km;老虎山断裂左旋走滑速率为6.5 mm/a,闭锁深度为10.3 km;海原断裂带西段、中段和东段的滑动速率依次为4.5 mm/a、5.6 mm/a和5.5 mm/a,闭锁深度依次为8.4 km、3.6km和4.3 km.表明毛毛山断裂左旋走滑运动速率小,闭锁深度大,有利于应变能的积累,使得该断裂及附近地区存在发生强震的背景.  相似文献   

5.
以ldquo;中国地壳运动观测网络rdquo;区域站在海原断裂带附近的所有观测数据及跨断裂GPS剖面观测数据作为约束,用Smith 3-D体力模型反演了海原断裂带断层滑动速率和断层闭锁深度.从西到东断裂共分为5段,采用遗传算法拟合GPS水平运动速度场,拟合残差均方根为1.1mm/a.反演结果为:毛毛山断裂左旋走滑运动速率为3.5mm/a,闭锁深度为22.0km;老虎山断裂左旋走滑速率为6.5mm/a,闭锁深度为110.3km;海原断裂带西段、中段和东段的滑动速率依次为4.5mm/a、5.6mm/a和5.5mm/a,闭锁深度依次为8.4km、3.6km和4.3km.表明毛毛山断裂左旋走滑运动速率小,闭锁深度大,有利于应变能的积累,使得该断裂及附近地区存在发生强震的背景.   相似文献   

6.
叶茂盛  孟国杰  苏小宁 《地震》2018,38(3):1-12
利用1999—2015年GPS水平速度场, 基于块体-位错模型, 反演了青藏高原东北缘4条主要断裂(海原断裂, 六盘山断裂, 陇县—宝鸡断裂, 西秦岭北缘断裂)的闭锁程度和滑动亏损速率的空间分布, 并分析了各断裂的地震危险性。 结果显示, 六盘山断裂南段、 陇县-宝鸡断裂北段、 西秦岭北缘断裂东段闭锁程度最强, 闭锁深度达到24 km左右; 西秦岭北缘断裂东段滑动亏损速率最大, 平均值达到3 mm/a; 六盘山断裂南段、 陇县—宝鸡断裂北段滑动亏损速率平均值达到1.9 mm/a, 稍弱于西秦岭北缘断裂东段; 海原断裂闭锁程度和滑动亏损速率相对较小, 闭锁程度和滑动亏损都仅分布在浅部。 我们认为现阶段海原断裂的地震危险性相对较小, 六盘山断裂南段、 陇县—宝鸡北段、 西秦岭北缘断裂东段地震危险性高于这些断裂的其他段落。 这些结果对于青藏高原东北缘地震危险性判定和地震灾害评估具有参考意义。  相似文献   

7.
利用2011—2016年长乐—诏安断裂带周边30个GPS基准站水平速度场数据,采用负位错模型,反演长乐—诏安断裂带滑动速率和闭锁程度;通过比对近年的地震分布,验证反演结果的合理性。反演结果表明,闽东南块体相对于闽东块体呈现左旋运动。长乐—诏安断裂带南段和北段同一深度的闭锁程度整体较中段高。长乐—诏安断裂带南段地表以下5km闭锁程度较高(闭锁比例0.99),北段地表以下10km闭锁程度较高,在25~30km处整条断裂均逐步由闭锁转变为完全蠕滑。上述反演结果与长乐—诏安断裂带周边的历史地震分布范围相符。  相似文献   

8.
利用1999—2007期和2009—2013期中国大陆GPS速度场数据,采用DEFNODE负位错反演程序估算了川滇菱形块体东边界——鲜水河—安宁河—则木河—小江断裂带在汶川地震前后的断层闭锁程度和滑动亏损空间分布动态变化特征,讨论了汶川地震对该断裂系统的影响范围和程度,并结合b值空间分布和地震破裂时-空结果分析了断裂系统的强震危险段.结果表明,汶川地震前鲜水河断裂最南端为完全闭锁(闭锁深度25km),中南段地表以下10~15km深度为强闭锁状态,中北段基本处于蠕滑状态;安宁河断裂最南端闭锁很弱,其余位置闭锁深度为10~15km;则木河断裂除最南端闭锁较弱以外,其余位置基本为完全闭锁;小江断裂在巧家以南、东川以南、宜良附近、华宁以北等四处位置闭锁较弱,其余位置为强闭锁.10年尺度的GPS速度场反演所得断层闭锁程度所指示的强震危险段,主要为鲜水河断裂道孚—八美段、安宁河断裂中段、则木河断裂中北段、小江断裂北段东川附近、小江断裂南段华宁—建水段,该结果与地质尺度的断层地震空区和30年尺度的b值空间分布所指示的危险段落具有一致性.汶川地震后断裂带远、近场速度分布和块体运动状态发生变化,这种区域地壳运动调整使得负位错模型反演得到的断裂带闭锁情况发生一定变化.汶川地震前后川滇菱形块体东边界平行断层滑动亏损速率均为左旋走滑亏损,且在安宁河断裂北端、则木河断裂中北段滑动亏损速率最大;除鲜水河断裂中南段与最南端和小江断裂东川附近以外,其余断裂震后滑动亏损速率均有所增加.垂直断层滑动亏损速率既有拉张亏损也有挤压亏损,且鲜水河断裂最南端由震前挤压转变为震后拉张,其余断裂除了安宁河断裂和小江断裂中段与最北端存在挤压滑动亏损速率外均为拉张速率.  相似文献   

9.
为研究龙门山断裂带西南段断层闭锁程度与变形状态,并分析该区域地震危险性,利用1999—2007、2009—2011、2011—2013和2013—2015年共4期GPS速度场,采用DEFNODE负位错反演程序估算了该断裂的闭锁程度和滑动亏损空间动态分布,并结合1990—2017年跨断层水准资料分析了断层的三维运动变形特征。结果表明:(1)龙门山断裂带西南段在汶川地震前后一直处于较强的闭锁状态,且汶川地震使西南段应变积累速度加快,加速了芦山地震的孕育进程;芦山地震后西南段闭锁程度并没有明显减弱,芦山地震对西南段的应变能释放是局部的和有限的。(2)龙门山断裂带4期垂直断层滑动亏损速率均为挤压亏损速率,汶川地震后西南段亏损速率明显增大,而后2期西南段亏损速率逐渐减小,目前依然明显高于汶川地震前量值。(3)汶川地震前跨断层水准结果显示龙门山断裂带西南段处于完全闭锁状态,汶川地震后多个场地的年均垂直变化速率明显增大,并随时间呈逐渐衰减状态,目前已经恢复至汶川地震前正常变化速率,因此西南段仍然处于闭锁状态。综合GPS反演结果和跨断层水准结果分析认为,目前龙门山断裂带西南段在大部分段落处于强闭锁状态下依然有发生大地震的可能性。  相似文献   

10.
基于2009—2015年中国大陆GPS水平速度场数据,采用DEFNODE负位错反演程序计算了丽江—小金河断裂带的断层闭锁程度和滑动亏损速率特征,并结合小震精定位结果分析了该断裂带的强震危险性。结果表明,GPS水平观测值与模型值的拟合结果较好,小震分布与闭锁程度结果存在一定的相关性,丽江—小金河断裂的南段—中段南部(丽江—宁蒗)除最南端外基本完全闭锁,断层的滑动亏损速率也相对较大,该段落具有发生较大地震的潜在危险性;而中段中北部—北段闭锁程度要弱得多,尤其在断裂带的北段,闭锁程度很弱,除了南部有部分闭锁,其余地方无强闭锁状态,且在5 km左右深度处断裂基本由闭锁状态转化为蠕滑状态特征,断层的滑动亏损速率也相应很小,该段发生较大地震的可能性较小。  相似文献   

11.
GPS揭示的郯庐断裂带中南段闭锁及滑动亏损   总被引:1,自引:0,他引:1       下载免费PDF全文
利用华北地区2009—2014年GPS水平运动速度场数据,采用块体负位错模型反演了郯庐断裂带中南段断层深部滑动速率、断层闭锁程度分布、断层滑动亏损速率分布及地震矩积累率,结合地表应变率分布,对郯庐断裂带中南段深、浅部形变、应变特征以及华北地区的地壳形变模式进行了分析.结果表明:郯庐断裂中南段的北端主要为右旋走滑特性,南端则表现为右旋走滑兼拉张性运动,断层滑动速率在0.9mm·a~(-1)至1.2mm·a~(-1),且沿断层走向由北至南逐次增大.断层闭锁程度分布沿走向分布不均一,断层闭锁深度由最北端的27km增加到中段的32km,至最南端变为5km,断层闭锁最深处与1668年郯城MS8.5震中位置相对应.断层滑动亏损速率沿走向由0.9mm·a~(-1)增加到1.2mm·a~(-1),沿倾向由地表至深部逐渐减小为0mm·a~(-1).地震矩积累率在郯庐断裂带中南段郯城附近较大,而地表对应区域为第二应不变分量的低值区.华北地区地壳变形以块体运动为主,块体内部应变及断层闭锁产生的负位错效应次之;郯庐断裂带中南段断层形变沿走向呈条带状分布,形变宽度单侧小于50km,形变量不超过1mm·a~(-1),且上盘形变略大于下盘.  相似文献   

12.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

13.
丽江—小金河断裂带现今断层运动特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用GPS观测对丽江—小金河断裂带的现今断层运动和变形状态进行了分析和探讨.丽江—小金河断裂带两侧地块地壳变形差异显著,GPS速度剖面结果显示断裂带两侧存在地壳变形不连续现象;进一步以GPS速度场为约束,基于负位错模型反演的丽江—小金河断裂带的断层闭锁空间分布结果显示,以木里为界,北东段断层强闭锁从地表向深部延伸至15km左右,西南段断层闭锁程度较高的区域位于5~15km范围内,浅层表现为弱闭锁的状态;滑动亏损速率结果显示,两闭锁段的滑动亏损速率相差近4mm·a~(-1),说明丽江—小金河断裂带西南段的背景滑动速率明显高于北东段.基于数值模拟分析了西南段浅层蠕滑运动对周边断层的影响,结果表明西南段的浅层左旋滑动对北东段闭锁区和西南段深部强闭锁区均为正影响.  相似文献   

14.
2008年汶川8.0级地震前横跨龙门山断裂带的震间形变   总被引:17,自引:4,他引:13       下载免费PDF全文
利用区域GPS和水准测量资料,结合地震构造背景的分析,本文研究2008年汶川8.0级地震前横跨龙门山断裂带地区的震间地壳形变,探讨引起这种形变的活动构造与动力学模式,并由此认识汶川地震的孕育与成因机制.主要结果表明:1997~2007年期间,自龙门山断裂带中段朝北西约230 km的地带内存在垂直于断裂的水平缩短变形、以及平行于断裂的水平右旋剪切变形,缩短率为1.3×10-8/a (即:0.013 mm/km/a),角变形速率为2.6×10-8/a;同一地带在1975~1997年期间还表现出垂直上隆变形,上隆速率在龙门山前山断裂与中央断裂之间仅0.6 mm/a,而至龙门山后山断裂及其以西达2~3 mm/a.这些反映了在汶川地震之前至少10~30余年,龙门山断裂带中段的前山与中央断裂业已闭锁、并伴有应变积累.造成这种形变的主要原因是:以壳内的低速层为“解耦”带,巴颜喀拉地块上地壳朝南东的水平运动在四川盆地西缘受到华南地块的阻挡、转换成龙门山断裂带中段的逆冲运动;由于该断裂段的震间闭锁,致使西侧的巴颜喀拉地块的上地壳发生横向缩短以及平行断裂的右旋剪切变形.然而,龙门山断裂带北段在1997~2007年期间除了有大约0.9 mm/a的右旋剪切变形外,横向的缩短变形极微弱,这可能与该断裂段西侧的岷江、虎牙、龙日坝等断裂带吸收了巴颜喀拉地块朝东水平运动的大部分有关.另外,汶川地震前,横跨龙门山断裂带中段与北段的地壳形变特征的差异,与汶川地震时能量释放的空间分布吻合.  相似文献   

15.
Located at the bend of the northeastern margin of Qinghai-Tibet Plateau, the Haiyuan fault zone is a boundary fault of the stable Alashan block, the stable Ordos block and the active Tibet block, and is the most significant fault zone for the tectonic deformation and strong earthquake activity. In 1920, a M8.5 earthquake occurred in the eastern segment of the fault, causing a surface rupture zone of about 240km. After that, the segment has been in a state of calmness in seismic activity, and no destructive earthquakes of magnitude 6 or above have occurred. Determining the current activity of the Haiyuan fault zone is very important and necessary for the analysis and assessment of its future seismic hazard. To study activity of the Haiyuan fault zone, the degree of fault coupling and the future seismic hazard, domestic and foreign scholars have carried out a lot of research using geology methods and GPS geodetic techniques, but these methods have certain limitations. The geology method is a traditional classical method of fault activity research, but dislocation measurement can only be performed on a local good fault outcrop. There are a limited number of field measurement points and the observation results are not equally limited depending on the sampling location and sampling method. The distribution of GPS stations is sparse, especially in the near-fault area, there is almost no GPS data. Therefore, the spatial resolution of the deformation field features obtained by GPS is low, and there are certain limitations in the kinematic parameter inversion using this method. In this study, we obtain the average InSAR line-of-sight deformation field from the Maomaoshan section to the mid-1920s earthquake rupture segment of the Haiyuan earthquake in the period from 2003 to 2010 based on the PSInSAR technique. The results show that there are obvious differences between the slip rates of the two walls of the fault in the north and the south, which are consistent with the motion characteristics of left-lateral strike-slip in the Haiyuan fault zone. Through the analysis of the high-density cross-fault deformation rate profile of the Laohushan segment, it is determined that the creep length is about 19km. Based on the two-dimensional arctangent model, the fault depth and deep slip rate of different locations in the Haiyuan fault zone are obtained. The results show that the slip rate and the locking depth of the LHS segment change significantly from west to east, and the slip rate decreases from west to east, decreasing from 7.6mm/a in the west to 4.5mm/a in the easternmost. The western part of the LHS segment and the middle part are in a locked state. The western part has a locking depth of 4.2~4.4km, and the middle part has a deeper locking depth of 6.9km, while the eastern part is less than 1km, that is, the shallow surface is creeping, and the creep rate is 4.5~4.8mm/a. On the whole, the 1920 earthquake's rupture segment of the Haiyuan fault zone is in a locked state, and both the slip rate and the locking depth are gradually increased from west to east. The slip rate is increased from 3.2mm/a in the western segment to 5.4mm/a in the eastern segment, and the locking depth is increased from 4.8km in the western segment to 7.5km in the eastern segment. The results of this study refine the understanding of the slip rate and the locking depth of the different segments of the Haiyuan fault zone, and provide reference information for the investigation of the strain accumulation state and regional seismic hazard assessment of different sections of the fault zone.  相似文献   

16.
Based on GPS velocity during 1999-2007, GPS baseline time series on large scale during 1999-2008 and cross-fault leveling data during 1985-2008, the paper makes some analysis and discussion to study and summarize the movement, tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8.0 Wenchuan earthquake, as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500km wide, while there was little deformation in Sichuan Basin and Longmenshan fault zone, which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone, and deformation amplitude decreased gradually from far field to near fault zone, and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone, and strain accumulation rate was larger than that of mid-northern segment. Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked, and a 20km width patch in southwestern segment between 12km to 22.5km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt, which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little, which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake, we consider that the Longmenshan fault is tightly locked from the surface to the deep, and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow, and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号