首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
城市群落大气污染源影响的空间结构及尺度特征   总被引:29,自引:1,他引:29  
以迅速发展的城市群落-北京及周边区域为样本, 利用2003年冬季(2月)、夏季(8月)北京城市大气环境现场科学试验(BECAPEX, Beijing City Air Pollution Observation Experiment)建筑群边界层大气污染动力-化学过程观测资料以及相关的气象要素、卫星反演气溶胶光学厚度等综合资料, 进行“点-面”空间结构动力-统计合成分析, 剖析北京大城市及周边区域大气污染影响域的空间结构及多尺度特征. 结果表明, 冬、夏季不同污染排放源对大气污染成分特征的贡献率具有显著差异, 统计模型主成分分析结果亦表明, 冬季气溶胶颗粒物成分结构以SO2和NOx影响为主; 夏季粒子成分结构则以CO, NOx影响为主. 冬、夏季北京城区不同方位测点近地层大气动力、热力结构及建筑群上边界各类污染物种均具有“同位相”变化及其“影响域”空间尺度特征. 功率谱分析发现冬、夏季颗粒物浓度和大气风场动力结构的周期谱相吻合, 冬季以长周期为主, 夏季则多为短周期, 揭示出冬、夏季大气环流季节性尺度特征对大气污染变化周期特征的影响效应. 分析城市区域热力非均匀性特征, 可发现北京地区热岛多尺度效应与高层建筑群面积非均匀扩展特征存在相关关系. 城市大气动力、热力特征空间结构中城市边界层群筑群湍流尺度特征对城市大气污染多尺度特征具有重要影响. 晴空、稳定天气条件下MODIS气溶胶变分订正分析场和污染源追踪相关合成风矢场综合分析模型均表明, 冬季北京大气污染气溶胶颗粒物的排放源可远距离追溯到北京南部周边的河北、山东及天津等地更大尺度空间范围, 气溶胶指数高值区与北京及周边地区居民户数高值区(采暖面源)空间分布存在关联. 冬、夏季空气质点后向轨迹特征呈类似上述多尺度特征, 且描述出不同季节污染源空间分布的尺度特征差异, 城区大气污染周边源轨迹路径主体来自城市近郊固定工业面源或采暖面源, 且冬季周边污染源扩散输送距离较夏季呈更远的空间尺度, 上述结论描述出城市区域大气污染源影响和大气动力结构引起的多尺度空间影响域及季节性特征. 冬季TOMS气溶胶光学厚度高值区域位于北京地区并向南延伸, 且呈南北向带状分布, 可描述出周边地形分布对区域尺度大气污染源扩散的动力影响效应. 研究分析表明: 北京周边大地形“谷地”内冬季污染程度与南部周边地区的污染排放源密切相关; 北京及周边地区冬季的气溶胶光学厚度和日照时数的“反位相”变化特征显著, 冬季云量、雾日数与气溶胶呈区域尺度相关特征, 反映了该区域尺度气溶胶影响的局地气候效应. 另外, 流域面尺度的大气干、湿沉降分布对密云水库区域尺度空间水体的影响分析亦反映了夏季水、土、气多圈层污染源影响多尺度空间结构对密云水库水质影响的可能性.  相似文献   

2.
MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用   总被引:23,自引:0,他引:23  
利用NASA MODIS气溶胶光学厚度产品与北京市空气污染指数做了长期比较分析, 发现二者的直接对比相关较低; 在引入季节变化的气溶胶标高、考虑了气溶胶的垂直分布后, 二者的相关系数有所提高; 在考虑了湿度影响因子订正后, 二者的相关系数显著提高. 证实卫星遥感气溶胶光学厚度在经过垂直和湿度影响两方面的订正后, 可以作为监测颗粒物污染物地面分布的一个有效手段. 利用 MODIS资料对2004年10月一次污染个例的分析, 表明卫星遥感气溶胶可以细致描绘地面污染事件的形成过程, 发现区域尺度输送和地形因素对北京市空气质量具有显著影响. 高分辨率的反演结果给出北京城区及周边地区气溶胶光学厚度的年平均分布, 表明高分辨率卫星遥感可能在监测颗粒物排放源分布上具有潜在的应用价值.  相似文献   

3.
EOF模型分析北京周边气溶胶影响域气候变化显著性特征   总被引:5,自引:0,他引:5  
利用1979~2000年TOMS气溶胶光学厚度和华北地区气象站日照时数、雾日数、低云量等资料以及EOF模型综合统计分析方法,研究冬季北京及周边城市群落的气溶胶分布特征及其对区域气候的影响效应问题,重点探讨了北京周边区域气候EOF模型特征向量变化显著区与气溶胶影响效应的相关联系.分析多年平均冬季TOMS气溶胶光学厚度的区域分布,发现北京及其南部周边地区“马蹄型”大地形谷地内存在南北向带状大范围相对稳定的气溶胶浓度高值区空间分布;冬季气溶胶光学厚度在北京与周边地区存在高相关影响区,在此气溶胶相互影响显著区,冬季气溶胶光学厚度与雾日数、低云量呈年际变化“同位相”特征,表明特定区域大气环流背景下,北京及周边地区气溶胶变化对该地区低云量、雾日数的年际变化存在影响效应.进一步通过EOF模型特征分析,揭示出华北地区冬季日照时数减少、低云量和雾日数增多气候变化区及其长期演变趋势,尤其EOF模型第一特征向量中日照时数、雾日数及低云量变化显著区与其20世纪80~90年代偏差显著区近似重合,且这些变化特征显著区域均与北京周边南北向带状气溶胶光学厚度高值区及其高相关区呈对应关系;日照时数、雾日数、低云量EOF模型第一特征向量时间系数与区域平均气溶胶光学厚度年际变化呈“同位相”特征,且均呈长期演变上升趋势.EOF模型分析描述出北京南部周边地区冬季日照时数减少、低云量和雾日数增多的区域气候变化主体特征,揭示出区域气溶胶影响效应,即多年平均冬季气溶胶光学厚度高值区以及日照时数、低云量和雾日数EOF模型第一特征向量变化显著区均位于北京南部周边城市群落区域,上述相关分布特征揭示出北京南部周边城市群落影响域存在气溶胶气候效应区域性增强的变化趋势.  相似文献   

4.
施晓晖  徐祥德 《地球物理学报》2012,55(10):3230-3239
针对2011年12月初北京及华北持续近一周的严重大雾天气这一热点事件,从城市群大雾过程气溶胶区域影响的视角,基于"973"项目"北京及周边地区大气-水-土环境污染机理与调控原理"的研究工作,就北京及周边地区大雾天气与大气气溶胶区域影响的关系等方面进行了讨论.研究表明,北京城市大雾前低空SO2和NO2浓度存在"积聚"与"突增"现象.北京及周边地区冬季雾日数和气溶胶光学厚度则呈正相关,并具有"同位相"的年际变化趋势.研究同时发现北京及其南部周边的冬季气溶胶高值区呈南北向带状分布,其与北京周边居民户数高值区有所吻合,反映了冬季北京城市气溶胶颗粒物的远距离影响源区及大尺度输送效应.统计分析指出,冬季北京气溶胶颗粒物PM10、PM2.5主要影响成分是SO2和NOX,且有关研究也表明,电厂、采暖和工业面源是SO2的三大本地排放源,而机动车、电厂、工业为NOX的三大本地排放源,上述大气PM10、PM2.5主成分污染源亦与雾水样本化学分析结果相吻合,即冬季由于燃煤在生活能源中的比例较大,北京雾水中硫元素和碳元素的含量都较高.因此,北京冬季大雾不仅与北京城区气溶胶及其污染排放影响存在相关关系,而且与北京周边天津、河北、山东等地气溶胶及大气污染物的远距离输送和气溶胶区域影响效应有着重要的联系.因此,北京雾霾天气及相关大气污染的治理工作首先要着眼于局地污染物的减排,但同时如何做好区域大气污染的协同治理也是不容忽视的问题.  相似文献   

5.
麦秸焚烧对北京市空气质量影响探讨   总被引:11,自引:0,他引:11  
基于MODIS卫星资料、大气流场及地面环境监测数据, 系统分析了近年来华北地区麦秸焚烧火点分布状况及影响北京的麦秸焚烧污染源区和输送路径, 探讨了周边麦秸焚烧对北京市空气质量的影响及焚烧过程前后各种污染物浓度变化规律. 结果表明: (1) 影响北京空气质量的麦秸焚烧污染物, 主要来源于华北平原冬小麦产区. 大气污染物输送路径为偏南及偏东方向, 其中以西南路径为主, 污染最严重. (2) 麦秸焚烧使北京主要大气污染物浓度迅速升高, 气态污染物中CO浓度升幅最明显、最迅速. (3) 麦秸焚烧排放大量O3前体物, 在适宜气象条件下致使O3浓度显著升高; NO白天由于O3大量消耗, 浓度不高, 但夜间随O3浓度的降低其浓度显著升高. (4) 麦秸焚烧排放的颗粒物中, 细颗粒浓度升幅最大, 输送最快. (5) 麦秸焚烧对不同大气污染物的浓度贡献差异明显, 可用PM10/SO2, CO/SO2等比值反映麦秸焚烧污染强弱; 麦收季节当两比值都明显增大时, 配合源区分析, 可判定是否受麦秸焚烧影响, 并依此定量分析麦秸焚烧对北京市大气污染的贡献. (6) 麦秸焚烧污染有明显区域分布特征, 距离北京较近的城市天津与北京所受影响有很好的相关性. 麦秸焚烧活动的无序性使该类污染变化存在明显的随机性; 同一区域麦秸焚烧活动时间相对集中, 往往形成严重大气污染事件.  相似文献   

6.
CMAQ-MOS区域空气质量统计修正模型预报途径研究   总被引:17,自引:0,他引:17  
通过分析2004年9月~2005年3月北京城市及远郊地区八个测点的大气污染观测资料, 揭示出城区尺度不同测点大气污染同步性与同位相时空变化特征, 并描述出采暖期与非采暖期大气污染物浓度存在源影响相关季节性显著差异, 城区与远郊测站大气污染物浓度亦表现出排放源影响相关显著的区域性特征, 即大气污染物浓度时空分布与排放源强度及其空间分布密切相关; 本文试验研究表明, 美国EPA新一代空气质量模式CMAQ对多类污染物不同尺度“面空间”分布及其变化倾向虽具有较强的预报能力, 但由于污染源时空特征十分复杂, 这是由于模式采用的平均源排放清单难以精细、客观描述预报区域不同尺度污染源强度的时空变化, CMAQ模式尚存在类似其他模式污染浓度预报量与实况相比明显偏低的“系统性”误差, 为了修正上述模式产品源排放清单产生的系统性预报偏差, 本文利用不同季节CMAQ模式产品与观测实况资料, 建立CMAQ-MOS区域空气质量统计修正预报模型, 并采用检验方法评估CMAQ-MOS方案预报能力, 提出采用CMAQ-MOS统计修正模型统计-动力相结合的空气质量预报新途径, 试验研究结果表明CMAQ-MOS方案可显著降低由于污染源影响不确定性产生的模式系统性预报误差, 明显提高了CMAQ模式空气质量预报水平, 本文亦提出了采用点-面结合预报思路, 即在大气污染具有同位相变化特征的“影响域”范围内, 用一个中心测点的CMAQ-MOS产品预报周边区域面上其他预报点的模式产品“再分析”场以及区域平均空气质量“面预报”方案.  相似文献   

7.
以2020年1~2月华北地区的大气重污染过程为对象,在WRF-CMAQ模型模拟的基础上,分析了气象条件和排放变化对此次重污染过程的影响,并量化分析了为消除PM2.5重度污染,区域主要大气污染物需要进一步减排的力度.研究结果显示,与2015年以来另外两次典型重污染过程相比,京津冀及周边“2+26”城市2020年1~2月期间的重污染过程气象条件最为不利,但由于近年来区域大气污染物排放量大幅削减,且受疫情影响主要大气污染物排放量相比2019~2020年秋冬季基准水平进一步减少了约32%,所以PM2.5峰值浓度明显低于前两次重污染过程.但这样的减排程度还不能满足消除重污染的要求,在给定的区域性严重污染、重污染定义下,“2+26”城市需在2020年1~2月排放的基础上进一步削减20%以上(或相比2019~2020年秋冬季正常排放削减45%左右),才可在同等不利的气象条件下基本消除区域性严重污染,北京不再出现连续3天及以上重污染;进一步削减40%以上(或相比2019~2020年秋冬季正常排放削减60%左右),才可基本消除区域性、连续性重度污染.研究还发现,紧接此次重污染过程后的清洁过程中,大气环境容量大幅增加,污染物排放量增加10倍,才会出现区域性重污染.  相似文献   

8.
颜鹏  黄健  R.Draxler 《中国科学D辑》2005,35(Z1):167-167
采用分行业、分季节、高分辨的北京市SO2排放源清单,和NCEP气象分析场资料,用HYSPLIT-4(HybridSingleParticleLagrangianIntegratedTrajectory)污染扩散模式,计算了北京2000年和2001年地面SO2逐日变化,分析了北京当地及周边地区不同类型排放源对北京地面SO2的影响.与实测值对比表明,模式能够较好的模拟出北京地面SO2的逐日变化特点和季节分布.计算的各种排放源对北京的影响说明,总体上,北京当地排放影响较大,周边源影响大约占20%左右,但在一定天气条件下,周边源贡献仍可超过30%以上,甚至个别时候超过40%;如果考虑周边源的采暖期源强增大一倍,则采暖期周边源平均贡献2000年和2001年分别增加到35%和40%.对北京市划分的7类排放源分别计算其对北京地面SO2的浓度贡献率发现,在北京市区的各类排放源中,占北京市区排放量较少部分(不到三分之一)的工业面源和锅炉面源对北京市区的SO2贡献很大,是北京市SO2污染治理的关键.  相似文献   

9.
对比分析了2006年1月和8月华北地区OMINO2卫星遥感二级产品和NO2实测浓度变化趋势的一致性,重点构建了CMAQ空气质量模式卫星遥感产品源同化模型,采用变分订正方法和CMAQ卫星遥感产品源同化技术方案探讨了华北地区冬夏季OMI高分辨率柱浓度卫星资料在空气质量数值预报中的应用.分析结果表明,无论冬季还是夏季,华北地区NO2实测浓度与OMINO2卫星遥感柱浓度的变化趋势具有较好的一致性,两者的相关性较显著,该卫星资料可适用于华北地区卫星遥感-地面观测综合变分分析;经过线性和变分订正后,北京周边地区OMINO2柱浓度的空间分布特征与实测值分布一致,而且可清晰反映出NO2空间分布特征,即NO2的城市局地污染特征较明显.经变分订正的OMINO2柱浓度的空间分布特征可看出,北京的西南、东南地区污染源对北京地区的NO2浓度的影响较大.采用高分辨率的OMINO2卫星遥感资料同化修正排放源时,WRF-CMAQ模式对于华北地区冬、夏季NO2浓度水平预报和趋势预报可取得较显著的改善效果.采用经变分订正的、高分辨率的OMINO2卫星遥感资料进行源同化时,可模拟得到与实测浓度分布较一致的、高分辨率的NO2浓度信息,弥补了采用地面...  相似文献   

10.
基于卫星资料的北京陆表水体的热环境效应分析   总被引:3,自引:0,他引:3  
应用不同分辨率的卫星资料对北京水体类别、密云水库及城区典型水体的热环境特性及城区水体对其周围热环境影响进行研究分析.利用2006年的MODIS卫星地表温度产品对北京不同类型的地表温度研究显示:就北京四季平均状态来说,水体类别在白天具有降温作用,在秋季和冬季夜晚具有保温作用,在春季和夏季夜晚具有降温作用.利用NOAA/AVHRR卫星资料对密云水库的研究分析显示:密云水库在夏季白天具有"冷湖效应",夜晚具有"暖湖效应";密云水库在冬季未结冰时白天和夜间具有"暖湖效应",在结冰时白天具有"冷湖效应"而晚上无冷暖效应.利用FY-3A/MERSI、NOAA/AVHRR和Landsat-TM卫星资料对北京城区典型水体监测结果显示:城区水体不会有热岛现象出现,大面积的水体易出现"冷岛效应".利用2008年夏季Landsat-TM卫星资料对城区典型水体和天坛公园绿地500 m范围内的建筑地温研究分析显示:城区水体温度明显低于天坛公园绿地.城区各水体周边100 m范围内建筑区地温平均下降1.2℃;100~200 m内下降0.6℃;200~300 m内下降0.4℃,300 m范围外无明显变化.天坛公园绿地周边仅100 m内的建筑区地温下降,下降值为0.4℃.这些研究结果表明:卫星资料能有效监测水体的热环境效应,大面积的水体是降低城市地表热岛效应的重要来源,北京城区水体对周边最大300 m范围内的建筑区地表温度具有降温效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号