首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A widely used one-dimensional nonlinear effective stress site response analysis program is used to model the response of potentially liquefiable soils during strong shaking. Ground motion records from six events of the 2010–2011 Canterbury earthquake sequence and the extensive site investigation data that have been obtained for the Christchurch area provide the basis for the analyses. The results of the analyses depend significantly on the input motions and soil profile characterization, so these important aspects are examined. Deconvolved Riccarton Gravel input motions were generated, because recorded rock or firm layer motions were not available. Nonlinear effective stress seismic site response analyses are shown to capture key aspects of the observed soil response through the comparison of acceleration response spectra of calculated surface motions to those of recorded surface motions; however, equivalent-linear and total stress nonlinear analyses capture these aspects as well. Biases in the computed motions compared to recorded motions were realized for some cases but they can be attributed primarily to the uncertainty in the development of the input motions used in the analyses.  相似文献   

2.
Local site conditions can significantly influence the characteristics of seismic ground motions. In this study, site response analyses using one-dimensional linear elastic (LE), equivalent-linear (EQL) and nonlinear (NL) approaches are performed at different seismic hazard levels of Singapore. Two seismic stations, namely, the KAP and BES stations located at soft soil sites, are selected from the national network of Singapore. Firstly, site response estimates using the LE, EQL (SHAKE04) and NL (DEEPSOIL) approaches are compared with the borehole recordings. Results show favorable matches between the predictions and the observations at the KAP site, while under-predictions are observed for all the three site effect approaches at the BES site. Secondly, the applicability of the LE, EQL and NL models is examined at different hazard levels of Singapore. It is found that for the hazard level at a return period of 475 years, the computed maximum strain (γmax) is 0.06% and then the EQL model can provide accurate site response predictions. However, for the hazard level at a return period of 2475 years, the calculated γmax is larger than 2%, resulting in notable differences in the predictions of different site response models. This study highlights the importance of site effects in seismic hazard analysis of Singapore.  相似文献   

3.
This paper presents a study of the influence of spatially variable ground motions on the longitudinal seismic response of a short, three-span, 30-degree skewed, reinforced concrete highway bridge. Linear and nonlinear finite element models are created for the bridge and linear elastic and nonlinear inelastic time history analyses conducted. Three different types of illustrative excitations are considered: The first utilizes spatially variable ground motions incorporating the effects of variable soil conditions, loss of coherency and wave passage as input motions at the structures' supports. The time history with the smallest peak displacement and the one with the largest peak displacement from the spatially variable ones are then used as uniform input motions at all bridge supports. The comparative analysis of the bridge model shows that the uniform ground motion input with the largest peak displacement cannot provide conservative seismic demands for all structural components—in a number of cases it results in lower response than that predicted by spatially variable motions. The present results indicate that there is difficulty in establishing uniform input motions that would have the same effect on the response of bridge models as spatially variable ones. Consequently, spatially variable input motions need to be applied as excitations at the bridge supports.  相似文献   

4.
Both linear and nonlinear behaviors of soil deposits were evaluated by strong and weak motion data observed on the surface and at depths of 6, 11, 17, 47 m at the Large Scale Seismic Test (LSST) array in Lotung, Taiwan. The soil properties measured by well logging and by the shear wave velocity profile measured by uphole and cross-hole methods are available. Both one-dimensional equivalent-linear method and nonlinear method are used for the evaluation have been used. The synthetic records at various depths are obtained by using the records at the bottom as input motion. These synthetic records are then compared with actual records at corresponding depths. Records of 13 earthquakes are used. We find that the synthetic records obtained from a linear model match well with actual records for small input motions, but the results obtained from a nonlinear model match poorly. On the other hand, the synthetic records using both the nonlinear model and equivalent-linear model are in good agreement with the observed records for large input motions. In these cases, the predicted response spectra using the linear model consistently overestimate the observed records. The threshold distinguishing the large and small input motions is 0.04 g at depth of 47 m for the LSST data. Thus, the nonlinearity started at 0.04 g and occurred unequivocally at 0.075 g. Furthermore, the dominant frequencies shift toward lower values when input motions become large. Clearly, the observed records at the LSST site manifest nonlinearity of soil response. The hysteresis loops evaluated by the nonlinear method show a permanent strain of about 0.01% in soil layers at higher ground motion input levels in this case.  相似文献   

5.
选取了50条实际地震动,采用一维场地等效线性化方法分别对均匀半空间场地和成层半空间场地进行地震响应分析,同时选择效益性作为判别标准来探究最优地震动峰值指标(峰值加速度PGA,峰值速度PGV,峰值位移PGD)随埋深变化的规律.研究结果表明:对于选取的两类场地,最优地震动峰值指标均随埋深的改变而变化,埋深浅时PGA效益性最...  相似文献   

6.
Three studies of site amplification factors, based on the recorded aftershocks, and one study based on strong motion data, are compared one with another and with the observed distribution of damage from the Northridge, CA, earthquake of 17 January 1994 (ML=6.4). In the epicentral area, when the peak ground velocities are larger than vm≈15 cm/s, nonlinear response of soil begins to distort the amplification factors determined from small amplitude (linear) wave motion. Moving into the area of near-field and strong ground motion (vm>30 cm/s), the site response becomes progressively more affected by the nonlinear soil response. Based on the published results, it is concluded that site amplification factors determined from small amplitude waves (aftershocks, small earthquakes, coda waves) and their transfer-function representation may be useful for small and distant earthquake motions, where soils and structures respond to earthquake waves in a linear manner. However in San Fernando Valley, during the Northridge earthquake, the observed distribution of damage did not correlate with site amplification determined from spectra of recorded weak motions. Mapping geographical distribution of site amplification using other than very strong motion data, therefore appears to be of little use for seismic hazard analyses.  相似文献   

7.
As the forward directivity and fling effect characteristics of the near-fault ground motions, seismic response of structures in the near field of a rupturing fault can be significantly different from those observed in the far field. The unique characteristics of the near-fault ground motions can cause considerable damage during an earthquake. This paper presents results of a study aimed at evaluating the near-fault and far-fault ground motion effects on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 10 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The Koyna gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records. The Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is employed in nonlinear analysis. Nonlinear dynamic response and seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. Both local and global damage indices are established as the response parameters. The results obtained from the analyses of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the near-fault ground motions, which have significant influence on the dynamic response of dam–reservoir–foundation systems, have the potential to cause more severe damage to the dam body than far-fault ground motions.  相似文献   

8.
Site response to earthquake loading is one of the fundamental problems in geotechnical earthquake engineering. Most site response analyses assume vertically propagating shear waves in a horizontally layered soil–rock system and simply ignore the effect of site response to vertical earthquake motion, although actual ground motions are comprised of both horizontal and vertical components. In several recent earthquakes very strong vertical ground motions have been recorded, raising great concern over the potential effect of vertical motion on engineering structures. Being a step toward addressing this concern, this paper presents a simple and practical procedure for analysis of site response to both horizontal and vertical earthquake motions. The procedure involves the use of the dynamic stiffness matrix method and equivalent-linear approach, and is built in the modern MATLAB environment to take full advantages of the matrix operations in MATLAB. The input motions can be specified at the soil–bedrock interface or at a rock outcropping. A detailed assessment of the procedure is given, which shows that the procedure is able to produce acceptable predictions of both vertical and horizontal site responses.  相似文献   

9.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

10.
Damping formulation for nonlinear 1D site response analyses   总被引:2,自引:0,他引:2  
Measurements and observations of ground shaking during large earthquakes have demonstrated the predominant role of site effects in the response of infrastructure during a seismic event. Despite significant efforts to model the hysteretic response and nonlinearity of soils due to medium and large ground motions, the most widely accepted nonlinear site response methods are not able to represent simultaneously the changes of stiffness and energy dissipation (damping) observed in both laboratory tests and during earthquake events. This paper presents two new soil damping formulations implemented in nonlinear one-dimensional site response analysis for small and large strains. The first formulation introduces an approach to construct a frequency-independent viscous damping matrix which reduces the over-damping at high frequencies, and therefore, the filtering at those frequencies. The second formulation introduces a reduction factor that modifies the extended Masing loading/unloading strain–stress relationship to match measured modulus reduction and damping curves simultaneously over a wide range of shear strains. A set of examples are introduced to illustrate the effect of using the two proposed formulations, separately and simultaneously, in nonlinear site response analyses.  相似文献   

11.
12.
Safety against earthquake hazards presents two aspects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena, such as amplification, landsliding and soil liquefaction. The correct evaluation of seismic hazard is, therefore, highly affected by risk factors due to geological nature and geotechnical properties of soils. In response to these new developments, several attempts have been made to identify and appraise geotechnical hazards and to represent them in the form of zoning maps, in which locations or zones with different levels of hazard potential are identified. The geotechnical zonation of the subsoil of the city of Catania (Italy) suggests a high vulnerability of the physical environment added to site amplification of the ground motion phenomena. The ground response analysis at the surface, in terms of time history and response spectra, has been obtained by some 1D equivalent linear models and by a 2D linear model, using a design scenario earthquake as input at the conventional bedrock. In particular, the study has regarded the evaluation of site effects in correspondence of the database of about 1200 boreholes and water-wells available in the data-bank of the Catania area. According to the response spectra obtained through the application of the 1D and 2D models, the city of Catania has been divided into some zones with different peak ground acceleration at the surface, to which corresponds a different value of the Seismic Geotechnical Hazard. A seismic microzoning map of the urban area of the city of Catania has been obtained. The map represents an important tool for the seismic improvement of the buildings, indispensable for the mitigation of the seismic risk.  相似文献   

13.
This article points out some particular features conditioning seismic hazard assessments (SHA) in Spain, a region with low–moderate seismicity. Although sized earthquakes occurred in the past, as evidenced by historical documents and neotectonic studies, no large events occurred during the last decades. The absence of strong motion records corresponding to earthquakes with magnitude larger than 5.5 is an important obstacle for the development of ground motion models constrained by local data, with the consequent difficulty in SHA studies. In this paper, some recent developments aiming at providing solutions to these difficulties are presented. Specifically, a strong motion databank containing a massive collection of accelerograms and response spectra from different configurations source-path-site corresponding to earthquakes all over the world is introduced, together with software utilities for its management. A first application of this databank is the development of specific ground motion models for Spain and for the Mediterranean region that predict peak ground accelerations as a function of several definitions of magnitude, distance and soil class. The predictive power of these ground motion models is tested by contrasting their estimates with recently recorded ground motions. The comparison between our ground-motion models with others proposed in the literature for other areas reveals a regular overestimation of the expected ground motions at Spanish sites by the non-local models. Consequently, SHA studies based in external models may overestimate the predicted hazard at the Iberian sites. In the last part of the paper a method for checking whether the response spectra proposed in the Spanish Building Code (NCSE-02) are consistent with actual accelerometric data from recent low magnitude earthquakes is applied. The spectral shapes of the Spanish Building Code NCSE-02 are compared with the response spectral shapes deduced from the available accelerograms by normalising the response spectra with the recorded PGA. It is appreciated that the NCSE-02 spectral shapes are exceeded by a large number of actual spectral shapes for short periods (around 0.2 s), a result to be taken into account in further revisions of the NCSE-02 code. The issues tackled in this work constitute not only an improvement for ground-motion characterisation in Spain, but also provide guidelines of general interest for potential applications in other regions with similar seismicity.  相似文献   

14.
以广东阳江蓄能电站为例,通过建立可考虑二维复杂工程场地影响的显式有限元结合人工边界的计算模型,给出了二维复杂场地条件对该场地条件一维等效线性化结果的修正值。该分析模型除可以充分考虑二维复杂场地条件、计算效率非线性对场地的影响及吸能边界等多种因素外,还具有计算简单,结果合理等优点。  相似文献   

15.
Linear and especially non-linear analyses of spatially extended structures, such as pipelines and bridges, often requires specification of time histories of ground motion at an array of closely spaced points. As the number of dense accelerograph arrays worldwide is small, and the number of earthquake observations is limited, synthetic motions with desired characteristics become necessary. This paper presents a method for synthesizing such motions, which is an extension of the SYNACC method, developed first in the early 1970s for synthetic accelerations, velocities and displacements at a point, and later extended to synthetic near surface strains, rotations and curvatures of ground motion at a point. It consists of unfolding in time a site specific Fourier amplitude spectrum of ground acceleration, obtained by an empirical scaling model, by representing the ground motion as a superposition of traveling wavelets of Love and Rayleigh waves and body waves, which propagate with phase and group velocities consistent with the dispersion characteristic of the site geology, approximated by parallel layers. Uniform hazard Fourier spectra or any specified target Fourier spectrum can also be used. Derivations of the point strains, rotations and curvatures are also presented. The method is illustrated for scenario M6.5 and M7.5 earthquakes and three dispersion models.  相似文献   

16.
This paper presents a series of analyses for the evaluation of the ground response of two NEHRP class D sites, subjected to shaking by a large number of strong ground-motion records. The two investigated sites have very distinct profiles, but they are characterised by almost identical Vs30 values. The site response analyses are performed using various methods of analysis and input parameters in order to explore the sensitivity of the ground response estimates and to identify the dominating parameters. Equivalent linear analysis is performed using different sets of dynamic soil properties curves, while nonlinear analysis is performed using different target dynamic soil curves, viscous damping formulations and fitting procedures for the constitutive model parameters. Particular focus is given to the sensitivity of the response when soil sites are subjected to high-intensity shaking, a subject of particular interest when the prediction of surface ground motions with low annual probabilities of exceedance is the target of probabilistic seismic hazard analyses (PSHA). The site response analysis results of this paper are incorporated into the probabilistic framework of Bazzurro and Cornell [1] in our companion paper in order to assess their impact on the final soil surface hazard calculation.  相似文献   

17.
Ground motions with forward-directivity effect in the near-fault region are obviously different from ordinary far-field ground motions. Design spectral models for this kind of motions have been proposed by correlating sim-ple pulses with parameters attenuation relationships in a previous study of the authors. To further test the applica-bility of the established design spectral model, we analyze ground motion pseudo-velocity response spectra (PVS), normalized pseudo-velocity spectra (NPVS) and bi-normalized pseudo-velocity spectra (BNPVS) of 53 typical near-fault forward-directivity ground motions. It is found that BNPVS not only has more salient features to reflect the difference between soil and rock sites, but also has less scattering to reveal the nature of forward-directivity motions. And then, BNPVS is used for prediction of design spectra accounting for the influence of site conditions, and the constructed design spectra are compared with those spectra established previously. It is concluded that site condition can heavily affect ground motions, buildings on rock can be even more dangerous than those on soil sites, in particular for ordinary buildings with short to middle vibration periods. Finally, pulse models are also suggested for structural analyses in the near-fault region.  相似文献   

18.
Our previous studies show that site effects (amplification of rock motions), source and path effects are coupled when response spectra are used to characterize the amplification ratios for a soil site modelled as nonlinear or elastic. The coupling is referred to as a “side effect” of using response spectral amplification ratios. In the present study we use a suite of rock site records, well distributed with respect to magnitude and source distance, from crustal, subduction interface and slab earthquakes to evaluate the response spectral amplification ratio for soft soil sites. We compare these side-effects for ground motions generated by three types of earthquakes, and we find that, at periods much shorter or much longer than the natural period of a soil site modelled as elastic, the average amplification ratios with respect to rock site ground motions from three types of earthquakes are moderately different and are very similar for other spectral periods. These differences are not statistically significant because of the moderately large scatter of the amplification ratios. However, the extent of magnitude- and source-distance-dependence of amplification ratios differs significantly. After the effects of magnitude and source distance on the amplification ratios are accounted for, the differences in amplification ratios between crustal and subduction earthquake records are very large in some particular combinations of source distance and magnitude range. These findings may have potential impact in establishing design spectra for soft soil sites using strong motion attenuation models or numerical modelling.  相似文献   

19.
In this study, the effect of soil–structure modeling assumptions and simplifications on the seismic analyses results of integral bridges (IBs) is investigated. For this purpose, five structural models of IBs are built in decreasing levels of complexity starting from a nonlinear structural model including close numerical simulation of the behavior of the foundation and backfill soil and gradually simplifying the model to a level where the effect of backfill and foundation soil is totally excluded. Nonlinear time history analyses of the modeled IBs are then conducted using a set of ground motions with various intensities representing small, medium and large intensity earthquakes. The analyses results are then used to assess the effect of modeling complexity level on the calculated seismic response of IBs. The nonlinear soil-bridge interaction modeling assumptions are found to have considerable effects on the calculated seismic response of IBs under medium and large intensity earthquakes.  相似文献   

20.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号