首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
A suite of reinforced‐concrete frame buildings located on hill sides, with 2 different structural configurations, viz step‐back and split‐foundation, are analyzed to study their floor response. Both step‐back and split‐foundation structural configurations lead to torsional effects in the direction across the slope due to the presence of shorter columns on the uphill side. Peak floor acceleration and floor response spectra are obtained at each storey's center of rigidity and at both its stiff and flexible edges. As reported in previous studies as well, it is observed that the floor response spectra are better correlated with the ground response spectrum. Therefore, the floor spectral amplification functions are obtained as the ratio of spectral ordinates at different floor levels to the one at the ground level. Peaks are observed in the spectral amplification functions corresponding to the first 2 modes in the upper portion of the hill‐side buildings, whereas a single peak corresponding to a specific kth mode of vibration is observed on the floors below the uppermost foundation level. Based on the numerical study for the step‐back and split‐foundation hill‐side buildings, simple floor spectral amplification functions are proposed and validated. The proposed spectral amplification functions take into account both the buildings' plan and elevation irregularities and can be used for seismic design of acceleration‐sensitive nonstructural components, given that the supporting structure's dynamic characteristics, torsional rotation, ground‐motion response spectrum, and location of the nonstructural components within the supporting structure are known, because current code models are actually not applicable to hill‐side buildings.  相似文献   

2.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   

3.
This paper investigates the influence of the hysteretic shear behavior of postinstalled anchors in concrete on the seismic response of nonstructural components (NSCs) using numerical methods. The purpose of the investigation is to evaluate current design requirements for NSC and their anchorage. Current design guidelines and simplified methods, such as floor response spectra (FRS), typically approach the dynamics of the structure-fastener-NSC (SFN) system using simplified empirical formulae. These formulations decouple the structure from the NSC and neglect the behavior of the anchor connection, with the assumption of full rigidity. There is a lack of knowledge on the complex interaction between a host structure, the fastening system, and the NSC, herein referred to as structure-fastener-nonstructural interaction (SFNI). More specifically, it is important to investigate whether and how the actual hysteresis shear behavior that takes place in the anchorage could alter the seismic response of the SFN system and its components. Herein, the results of extensive nonlinear dynamic analyses (NLDA) with different models for the anchorage force-displacement relationship are presented and compared with those obtained with FRS procedures and current code provisions. The anchor models include (a) linear-elastic, (b) bilinear, and (c) a recently developed hysteresis rule. The results of the NLDA showed that the first two approaches are not able to reflect the behavior of an anchor loaded in dynamic shear. Moreover, when using the more refined hysteresis model, it appears that current code provisions might underestimate the component and anchor shear amplification factors for rigid NSC fixed to the host structure through anchors.  相似文献   

4.
A statistical analysis of the peak acceleration demands for nonstructural components (NSCs) supported on a variety of stiff and flexible inelastic regular moment‐resisting frame structures with periods from 0.3 to 3.0 s exposed to 40 far‐field ground motions is presented. Peak component acceleration (PCA) demands were quantified based on the floor response spectrum (FRS) method without considering dynamic interaction effects. This study evaluated the main factors that influence the amplification or decrease of FRS values caused by inelasticity in the primary structure in three distinct spectral regions namely long‐period, fundamental‐period, and short‐period region. The amplification or decrease of peak elastic acceleration demands depends on the location of the NSC in the supporting structure, periods of the component and building, damping ratio of the component, and level of inelasticity of the supporting structure. While FRS values at the initial modal periods of the supporting structure are reduced due to inelastic action in the primary structure, the region between the modal periods experiences an increase in PCA demands. A parameter denoted as acceleration response modification factor (Racc) was proposed to quantify this reduction/increase in PCA demands. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these near- field effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.  相似文献   

6.
This paper reports on a series of shaking table tests on a full-scale flat-bottom steel silo filled with soft wheat, characterized by aspect ratio of around 0.9. The specimen was a 3.64-m diameter and 5.50-m high corrugated-wall cylindrical silo. Multiple sensors were used to monitor the static and dynamic response of the filled silo system, including accelerometers and pressure cells. Numerous unidirectional dynamic tests were performed consisting of random signals, sinusoidal inputs, and both artificial and real earthquake records. The objectives of this paper are (i) to provide a general overview of the whole experimental campaign and (ii) to present selected results obtained for the fixed-base configuration. The measured data were processed to assess the static pressures, the dynamic overpressures (related to the effective mass) and the accelerations of monitored points on the silo wall, and to identify the basic dynamic properties (fundamental frequency of vibration, damping ratio, dynamic amplification factors) of the filled silo. The main findings are discussed and compared with the predictions given by available theoretical models and code provisions. It is found that the fundamental frequency slightly decreases with increasing acceleration, while it slightly increases with increasing compaction of the granular material. For close-to-resonance input, the dynamic amplification (in terms of peak values of accelerations) increases along the height of the silo wall up to values of around 1.4 at the top surface of the solid content. The dynamic overpressures appear to increase with depth (differently from the EN1998-4 expectations), and to be proportional to the acceleration.  相似文献   

7.
Strength-reduction factors that reduce ordinates of floor spectra acceleration due to nonlinearity in the secondary system are investigated. In exchange for permitting some inelastic deformation to occur in the secondary system or its supports, these strength reduction factors allow to design the nonstructural elements or their supports for lateral forces that are smaller than those that would be required to maintain them elastically during earthquakes. This paper presents the results of a statistical analysis on component strength-reduction factors that were computed considering floor motions recorded on instrumented buildings in California during various earthquakes. The effect of yielding in the component or its anchorage/bracing in offering protection against excessive component acceleration demands is investigated. It is shown that strength-reduction factors computed from floor motions are significantly different from those computed from ground motions recorded on rock or on firm soils. In particular, they exhibit much larger reductions for periods tuned or nearly tuned to the dominant modal periods of the building response. This is due to the large differences in frequency content of ground motions and floor motions, with the former typically characterized by wide-band spectra whereas the latter are characterized by narrow-band spectra near periods of dominant modes in the response of the building. Finally, the study provides approximate equations to estimate component strength-reduction factors computed through nonlinear regression analyses.  相似文献   

8.
In this paper, a parametric study is conducted in order to evaluate the seismic demand on light acceleration‐sensitive nonstructural components caused by frequent earthquakes. The study is motivated by the inconsistent approach of current building codes to the design of nonstructural components; the extensive nonstructural damage recorded after recent low‐intensity earthquakes also encouraged such a study. A set of reinforced concrete frame structures with different number of stories, that is, 1 to 10 stories, are selected and designed according to Eurocode 8. The structures are subjected to a set of frequent earthquakes, that is, 63% probability of exceedance in 50 years. Dynamic nonlinear analyses are performed on the reference structures in order to assess the accuracy of the equations to predict seismic forces acting on nonstructural components and systems in Eurocode. It is concluded that the Eurocode equations underestimate the acceleration demand on nonstructural components for a wide range of periods, especially in the vicinity of the higher mode periods of vibration of the reference structures; for periods sufficiently larger than the fundamental period of the structure, instead, the Eurocode formulation gives a good approximation of the floor spectra. Finally, a novel formulation is proposed for an easy implementation in future building codes based on the actual Eurocode provisions. The proposed formulation gives a good estimation of the floor spectral accelerations and is able to envelope the floor spectral peaks owing to the higher modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
适用于中国场地分类的地震动反应谱放大系数   总被引:26,自引:3,他引:26       下载免费PDF全文
对美国抗震设计规范的场地系数的研究基础进行了分析,并对中美两国场地分类指标进行了对比. 通过对场地土层波速测试资料的分析,找出了两种分类方法的联系,从而得到了将美国场地系数转换为适于中国场地分类的方法,同时给出了基于中国场地分类的地震动反应谱放大系数.   相似文献   

10.
Site coefficients suitable to China site category   总被引:1,自引:0,他引:1  
Introduction Site effect on strong earthquake ground motion is an important problem for seismologists and earthquake engineers. The direct approach to study site effect is to use data from a vertical array of seismometers, which is called borehole station…  相似文献   

11.
Southwest British Columbia has the potential to experience large‐magnitude earthquakes generated by the Cascadia Subduction Zone (CSZ). Buildings in Metro Vancouver are particularly vulnerable to these earthquakes because the region lies above the Georgia sedimentary basin, which can amplify the intensity of ground motions, particularly at medium‐to‐long periods. Earthquake design provisions in Canada neglect basin amplification and the consequences of accounting for these effects are uncertain. By leveraging a suite of physics‐based simulations of M9 CSZ earthquakes, we develop site‐specific and period‐dependent spectral acceleration basin amplification factors throughout Metro Vancouver. The M9 simulations, which explicitly account for basin amplification for periods greater than 1s, are benchmarked against the 2016 BC Hydro ground motion model (GMM), which neglects such effects. Outside the basin, empirical and simulated seismic hazard estimates are consistent. However, for sites within the basin and periods in the 1‐5 s range, GMMs significantly underestimate the hazard. The proposed basin amplification factors vary as a function of basin depth, reaching a geometric mean value as high as 4.5 at a 2‐s period, with respect to a reference site located just outside the basin. We evaluate the impact of the M9 simulations on tall reinforced concrete shear wall buildings, which are predominant in the region, by developing a suite of idealized structural systems that capture the strength and ductility intended by historical seismic design provisions in Canada. Ductility demands and collapse risk conditioned on the occurrence of the M9 simulations were found to exceed those associated with ground motion shaking intensities corresponding to the 975 and 2475‐year return periods, far exceeding the ~500‐year return period of M9 CSZ earthquakes.  相似文献   

12.
Fragility functions are commonly used in performance‐based earthquake engineering for predicting the damage state of a structure subjected to an earthquake. This process often involves estimating the structural damage as a function of structural response, such as the story drift ratio and the peak floor absolute acceleration. In this paper, a new framework is proposed to develop fragility functions to be used as a damage classification/prediction method for steel structures based on a wavelet‐based damage sensitive feature (DSF). DSFs are often used in structural health monitoring as an indicator of the damage state of the structure, and they are easily estimated from recorded structural responses. The proposed framework for damage classification of steel structures subjected to earthquakes is demonstrated and validated with a set of numerically simulated data for a four‐story steel moment‐resisting frame designed based on current seismic provisions. It is shown that the damage state of the frame is predicted with less variance using the fragility functions derived from the wavelet‐based DSF than it is with fragility functions derived from an alternate acceleration‐based measure, the spectral acceleration at the first mode period of the structure. Therefore, the fragility functions derived from the wavelet‐based DSF can be used as a probabilistic damage classification model in the field of structural health monitoring and an alternative damage prediction model in the field of performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
During the L’Aquila seismic sequence (Italy, 2009) we had the opportunity to install temporary accelerometric stations to study the role of seismic site amplification in damage enhancement. Two of the monitored sites, Castelnuovo and Navelli were also a good test for the recently introduced Italian seismic code (NTC08 2008) that prescribes an aggravation factor for slopes and ridges. Castelnuovo was an ideal situation to check the rule proposed for the distribution of amplification as a function of the position along a slope, while Navelli provided the possibility to test the almost equivalent factors that NTC08 sets for stratigraphic and topographic amplification (respectively up to 40 and 60 %). In neither case the observation matches code provisions. For Castelnuovo, there is a frequency dependence that shows as the code is over-conservative for short periods but fails to predict amplification in the intermediate range. For Navelli, the code provision is verified for long periods, but in the range around the site resonance frequency the stratigraphic amplification proves to be three times more important than the topographic one.  相似文献   

14.
Presented in this paper is a detailed parametric study of the coupled lateral and torsional response of single-storey building models subjected to earthquake base loadings. The aim is to assess the influence of torsional coupling on the elastic responses of buildings subjected to transient ground motion records, and to make comparisons with current code provisions which make allowance for coupling effects by means of empirical design procedures. The study of building responses to selected earthquake excitations shows that the qualitative effects of the controlling parameters on the maximum translational and torsional responses of the coupled system are similar to those observed in analyses using idealized response spectra to represent the input ground motion. It is also demonstrated that for particular ranges of the key parameters defining the structural system, typical of the properties of many actual buildings, torsional coupling induces significant amplification of earthquake forces. This amplification is shown to be inadequately accounted for in the current design provisions of major building codes. Recommendations for improving existing design practice for asymmetric structures are outlined.  相似文献   

15.
The Hanyuan Town is located approximately 200 km from the macro-epicenter of the great Wenchuan earthquake. However, it is within the only Intensity VIII zone, surrounded by a region of Intensity VI. The objective of this study was to investigate this high-intensity anomaly with respect to the site amplifications in the Hanyuan Town. The base inputs were derived from the records at a nearby strong-motion station because no records were available from the town. The characteristics of the subsurface formations and their dynamic properties at a typical site in the town were obtained by drilling, field tests and laboratory tests. Seismic response and parametric sensitivity analyses of the site were conducted using Shake 91, and the results were compared with the provisions for rare earthquakes from the Chinese Code for Seismic Design of Buildings (GBJ11-89). The results showed that the average peak acceleration at the site during the Wenchuan earthquake is similar to the code-specified value under rare earthquakes, that the corresponding spectral accelerations for periods between approximately 0.35 and 0.75 s are significantly stronger than those specified by the code and that the average amplification factor at the site is significantly higher than the mean value of the site class. These findings indicate that the high-intensity anomaly in the town was primarily caused by site amplification effects from the unique structure of the soil strata.  相似文献   

16.
The inelastic earthquake response of eccentric, multistorey, frame‐type, reinforced concrete buildings is investigated using three‐ and five‐storey models, subjected to a set of 10, two‐component, semi‐artificial motions, generated to match the design spectrum. Buildings designed according to the EC8 as well as the UBC‐97 code were included in the investigation. It is found that contrary to what the simplified one‐storey, typical, shear‐beam models predict, the so‐called ‘flexible’ side frames exhibit higher ductility demands than the ‘stiff’ side frames. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. This investigation constitutes one of the first attempts to study the problem of inelastic torsion by means of realistic, multistorey inelastic building models. Additional studies with similar or even more refined idealizations will certainly be required to arrive at definite results and recommendations for possible code revisions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A multi‐level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low‐ to mid‐rise two‐dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4‐ and 8‐story) buildings adopting both space‐ and perimeter‐framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code‐compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code‐specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code‐limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three‐story and three‐span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake‐induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an ‘S’ type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with floor acceleration spectra, which are used for the seismic design and assessment of acceleration‐sensitive equipment installed in buildings. In design codes and in practice, not enough attention has been paid to the seismic resistance of such equipment. An ‘accurate’ determination of floor spectra requires a complex and quite demanding dynamic response history analysis. The purpose of the study presented in this paper is the development of a direct method for the determination of floor acceleration spectra, which enables their generation directly from the design spectrum of the structure, by taking into account the structure's dynamic properties. The method is also applicable to inelastic structures, which can greatly improve the economic aspects of equipment design. A parametric study of floor acceleration spectra for elastic and inelastic single‐degree‐of‐freedom (SDOF) and multiple‐degree‐of‐freedom structures was conducted by using (non)linear response history analysis. The equipment was modelled as an elastic single‐degree‐of‐freedom system. The proposed method was validated by comparing the results obtained with the more accurate results obtained in a parametric study. Due to its simplicity, the method is an appropriate tool for practice. In the case of inelastic structural behaviour, the method should be used in combination with the N2 method, or another appropriate method for simplified nonlinear structural analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
以2021年5月21日云南漾濞6.4级地震所获取的漾濞台强震动记录作为输入,对不同高度(低层、多层和高层)钢筋混凝土框架结构以及一低层砖混结构进行动力时程分析,探讨不同高度钢筋混凝土框架结构动力响应特点,对比砖混结构与低层框架结构地震响应的不同,并对结构进行性能评定.主要分析结果表明,所有结构的楼层加速度响应中,竖向加速度放大效应显著,尤其是低层框架;框架结构Y方向楼层傅里叶幅值谱峰值主要在1~2.5 Hz频率范围;多层框架的层间位移角响应更大;所有框架结构以及设防的砖混结构层间位移角均未超过中等破坏限值;与低层框架结构相比,基本周期更短的砖混结构水平向楼层加速度放大效应更为显著;设防的砖混结构具有良好的抗震性能.分析结果可为灾区震害评估和震后修复提供指导,同时为建筑结构抗震设计提供一定参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号