首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hole stability problems occurring during construction of monitoring wells in coarse, unconsolidated alluvium can be overcome by using a drill-through casing driver mounted on a standard top-head drive rotary rig. Steel casing is driven contemporaneously with drilling, providing continuous hole stability. Samples of aquifer material and ground water can be taken at discrete depths as drilling proceeds. Monitoring well completion is accomplished by: (1) using the steel casing as an open-ended piezometer; (2) installing a telescoping well screen; (3) plugging the casing end and perforating desired intervals, (4) installing one or more smaller diameter wells, and then (5) pulling back the steel casing. Advantages of this drilling method include maintenance of hole stability during drilling and well completion, faster borehole construction time than traditional methods in coarse alluvial deposits and other poorly sorted formations, and collection of representative samples of the geologic formations and ground water; additionally, drilling fluids are not required.  相似文献   

2.
Soil-solution samplers and shallow ground water monitoring wells were utilized to monitor nitrate movement to ground water following H2O2 application to a clogged soil absorption system. Nitrate-nitrogen concentrations in soil water and shallow ground water ranged from 29 to 67 mg/L and 9 to 22 mg/L, respectively, prior to H2O2 treatment. Mean nitrate-nitrogen concentrations in soil water and ground water increased and ranged from 67 to 115 mg/L and 23 to 37 mg/L, respectively, one week after H2O2 application. Elevated concentrations of nitrate-nitrogen above background persisted for several weeks following H2O2 treatment. The H2O2 treatment was unsuccessful in restoring the infiltrative capacity of a well-structured soil. Application of H2O2 to the soil absorption system poses a threat of nitrate contamination of ground water and its usefulness should be fully evaluated before rehabilitation is attempted.  相似文献   

3.
Advanced borehole-geophysical methods were used to assess the geohydrology of fractured crystalline bedrock at five test boreholes in southwestern Manhattan Island, New York, in preparation for construction of a third water tunnel for New York City. The boreholes penetrated gneiss and other crystalline bedrock that has an overall southwest to northwest dipping foliation with a 60° dip. Most of the fractures encountered are either nearly horizontal or have moderate northwest dip azimuths. Fracture indexes range from 0.25 to 0.44 fracture per foot (0.3 m) of borehole.
Electromagnetic (EM) and heat-pulse flowmeter logs obtained under ambient and pumping conditions, together with other geophysical logs, indicate transmissive fracture zones in each borehole. Pumping tests of each borehole indicated transmissivity ranges from <2 to 360 ft2/day (0.2 to 33 m2/day). Ground water appears to flow within an interconnected fracture network toward the south and west within the study area. No correlation was indicated between the fracture index and the total borehole transmissivity.  相似文献   

4.
Large differences in chemistry between sampling points separated In short vertical intervals are often observed in contaminant plumes in both granular and fractured aquifers. However, most regional models assume that such differences will be reduced by dispersive mixing during transport. At a field site located in a discharge area on the Oak Ridge Reservation, Tennessee, ground water flows along discrete flowpaths, as evidenced by the presence of four distinct water types—Ca-HCO3, Ca-Na-HCO3, and Na-Ca-HCO3, and Na-Ca-HCO3-S04—in samples collected from shallow (< 3D in) multilevel wells. The preservation of distinct chemical signatures suggests that ground water must he contained in discrete flow zones during much of its transport time. The chemical composition of the water types can be explained primarily by strata-bound flow over varying flowpath lengths and secondarily by mixing of waters during cross-formational flow in a discharge zone. The hydrochemical facies identified by correlation of water types between the boreholes indicate the general orientation of ground water How paths. These inferred flowpaths are oblique to the orientation of the measured hydraulic gradient and are more closely aligned with bedding and the calculated flow direction. Results of this study indicate that discrete multilevel sampling for analysis of major ions, in addition to information gathered from tracer tests, borehole flow tests. and visual core observations, can provide valuable information on flow directions and preferential flowpaths for contaminant transport.  相似文献   

5.
Tomohiro  Toki  Toshitaka  Gamo  Urumu  Tsunogai 《Island Arc》2006,15(3):285-291
Abstract   We collected free-gas and in situ fluid samples up to a depth of 200.6 m from the Sagara oil field, central Japan (34°44'N, 138°15'E), during the Sagara Drilling Program (SDP) and measured the concentrations and stable carbon isotopic compositions of CH4 and C2H6 in the samples. A combination of the CH4/C2H6 ratios with the carbon isotope ratios of methane indicates that the hydrocarbon gases are predominantly of thermogenic origin at all depths. The isotope signature of hydrocarbon gases of δ13      < δ13     suggests that these gases in the Sagara oil field are not generated by polymerization, but by the decomposition of organic materials.  相似文献   

6.
The Effect of Three Drilling Fluids on Ground Water Sample Chemistry   总被引:1,自引:0,他引:1  
Three monitoring wells were installed in borings that were constructed using water-based drilling fluids containing either (1) guar bean, (2) guar bean with breakdown additive, or (3) bentonite. These fluids were selected to observe their effect on the chemistry of subsequent water samples collected from the wells. The wells were installed to depths of 66 feet, 100.5 feet and 103 feet, respectively, in fine-to-medium sand and gravel outwash deposits near Antigo, Wisconsin. Drilling fluids were necessary to maintain an open borehole during well construction through strata containing cobbles and boulders.
The bentonite and guar drilling fluids caused temporarily elevated concentrations of chemical oxygen demand (COD) in ground water samples collected from the monitoring wells. Using standard development, purging and sampling procedures, elevated COD concentrations persisted for about 50 days for the well bored with the guar-with-additive fluid, 140 days for the bentonite well and 320 days for the guar well. Unfiltered ground water samples for all wells had greater concentrations of COD than samples filtered through a 0.45 micron filter. Sulfate concentrations also decreased with time in the guar-with-additive well and bentonite well, but not in the guar well.
The elevated COD concentrations are attributed to the large concentrations of oxidizable carbon present in the guar bean drilling fluid and in the organic polymers present in the bentonite drilling fluid. Well development and purging procedures, including borehole flushing, surging, bailing and/or chemically induced viscosity breakdown of the guar mud decreased the time before background conditions were achieved. Future research should evaluate the physical and geochemical interaction of different drilling fluid compositions with a variety of geologic matrices and drilling, well development and well purging techniques.  相似文献   

7.
Noncontaminating procedures were used during the hollow-stem auger installation of 12 observation wells on three hazardous waste sites in Kansas. Special precautions were taken to ensure that water samples were representative of the ground water in the aquifer and were not subjected to contamination from the land surface or cross contamination from within borehole. Precautions included thorough cleaning of the hollow-stem auger and casing, keeping drill cuttings from falling back into the borehole while drilling, and not adding water to the borehole. These procedures were designed to prevent contamination of the ground water during well installation.
Because the use of water during well installation could contaminate the aquifer or dilute contaminants already present in the aquifer, two methods of well installation that did not introduce outside water to the borehole were used. The first method involved using a slotted 3/4-inch coupling that was attached to the bit plate of the hollow-stem auger, allowing formation water to enter the auger, thereby preventing sand-plug formation. This method proved to be adequate, except when drilling through clay layers, which tended to clog the slotted coupling. The second method involved screened well swab that allowed only formation water to enter the hollow-stem auger and prevented sand from plugging the hollow-stem auger when the bit plate was removed.  相似文献   

8.
Yasushi  Mori  Tadao  Nishiyama  Takeru  Yanagi 《Island Arc》2007,16(1):28-39
Abstract   Reaction zones of 0.5–10.0 m thick are commonly observed between serpentinite and pelitic schist in the Nishisonogi metamorphic rocks, Kyushu, Japan. Each reaction zone consists of almost monomineralic or bimineralic layers of talc + carbonates, actinolite (or carbonates + quartz), chlorite, muscovite and albite from serpentinite to pelitic schist. Magnesite + quartz veins extend into the serpentinite from the talc + carbonates layer, while dolomite veins extend into the pelitic schist from the muscovite layer. These veins are filled by subhedral minerals with oriented growth features. Primary fluid inclusions yield the same homogenization temperatures (145–150°C) both in the reaction zone and in the veins, suggesting their simultaneous formation. Mass-balance calculations using the isocon method indicate that SiO2, MgO, H2O and K2O are depleted in the reaction zone relative to the protoliths. These components were probably extracted from the reaction zone as fluids during the formation of the reaction zone.  相似文献   

9.
Hollow-stem augers are a widely used drilling method for constructing monitoring wells in unconsolidated materials. The drilling procedures used when constructing monitoring wells with hollow-stem augers, however, are neither standardized nor thoroughly documented in the published literature.
Variations in drilling procedures and techniques may occur as a result of the: (1) type of auger drill equipment and formation samplers used; (2) hydrogeologic conditions at the site, especially where heaving sands occur; and (3) known or suspected presence of contaminated zones, where there is a potential for the vertical movement of contaminants within the borehole.
In a saturated zone in which heaving sands occur, changes in equipment and drilling techniques are required to provide a positive pressure head of water within the auger column. This may require the addition of clean water or other drilling fluid inside the augers.
When monitoring the quality of ground water below a known contaminated zone, hollow-stem auger drilling may not be advisable unless protective surface casing can be installed. Depending on the site hydrogeology, conventional hollow-stem auger drilling techniques alone may not be adequate for the installation of the protective surface casing. A hybrid drilling method may be needed that combines conventional hollow-stem auger drilling with a casing driving technique that advances the borehole and surface casing simultaneously.  相似文献   

10.
Sharma S  Frost CD 《Ground water》2008,46(2):329-334
Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using δ13C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG)–coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive δ13CDIC (12‰ to 22‰) that is readily distinguished from the negative δ13C of most surface and ground water (−8‰ to −11‰). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high δ13C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the δ13CDIC and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the δ13CDIC of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using δ13CDIC to distinguish water produced from different coal zones.  相似文献   

11.
To assess the vulnerability of ground water to contamination in the karstic Upper Floridan aquifer (UFA), age-dating tracers and selected anthropogenic and naturally occurring compounds were analyzed in multiple water samples from a public supply well (PSW) near Tampa, Florida. Samples also were collected from 28 monitoring wells in the UFA and the overlying surficial aquifer system (SAS) and intermediate confining unit located within the contributing recharge area to the PSW. Age tracer and geochemical data from the earlier stage of the study (2003 through 2005) were combined with new data (2006) on concentrations of sulfur hexafluoride (SF6), tritium (3H), and helium-3, which were consistent with binary mixtures of water for the PSW dominated by young water (less than 7 years). Water samples from the SAS also indicated mostly young water (less than 7 years); however, most water samples from monitoring wells in the UFA had lower SF6 and 3H concentrations than the PSW and SAS, indicating mixtures containing high proportions of older water (more than 60 years). Vulnerability of the PSW to contamination was indicated by predominantly young water and elevated nitrate-N and volatile organic compound concentrations that were similar to those in the SAS. Elevated arsenic (As) concentrations (3 to 19 μg/L) and higher As(V)/As(III) ratios in the PSW than in water from UFA monitoring wells indicate that oxic water from the SAS likely mobilizes As from pyrite in the UFA matrix. Young water found in the PSW also was present in UFA monitoring wells that tap a highly transmissive zone (43- to 53-m depth) in the UFA.  相似文献   

12.
Geographical distribution of helium isotope ratios in northeastern Japan   总被引:1,自引:0,他引:1  
Keika  Horiguchi  Sadato  Ueki  Yuji  Sano  Naoto  Takahata  Akira  Hasegawa  George  Igarashi 《Island Arc》2010,19(1):60-70
In order to study the precise geographical distribution of helium isotope ratios in northeastern Japan and compare it with geophysical data, we collected 43 gas and water samples from hot and mineral springs in the region where the ratio had never been reported, and measured the 3He/4He and 4He/20Ne ratios of these samples. It was found that the 3He/4He ratios show clear contrasts between the forearc and the back-arc regions in the Tohoku district in northeastern Japan. In the forearc region, the ratios are smaller than 1 RA (1 RA = 1.4 × 10−6; RA means the 3He/4He ratio of the atmosphere). On the other hand, those along the volcanic front and in the back-arc region are apparently higher. Moreover, we found a variation in the 3He/4He ratios along the volcanic front. In Miyagi Prefecture (38–39°N), the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1 RA in and around the southern border between Iwate and Akita Prefectures (39–39.5°N). Comparing the distribution of helium isotope ratios to results of recent geophysical studies, we found that the features in geographical distribution of helium isotope ratios are similar to those of seismic low-velocity zone distributions and high Qp−1 distributions in the uppermost mantle. These observations strongly suggest that the helium isotope ratios reflect the distribution of melts in the uppermost mantle and are a useful tool for investigating the origin, behavior, and distribution of deep fluids and melts.  相似文献   

13.
Nobuo  Sakakibara  Ikuo  Hara  Kenji  Kanai  Kenji  Kaikiri  Tugio  Shiota  Kei  Hide Peter  Paulitsch 《Island Arc》1992,1(1):186-197
Abstract Quartz c-axis fabrics of the Sambagawa schists produced along a late Mesozoic convergent plate margin were analysed so that their tectono-metamorphic history could be clarified. It has been noted by many authors that quartz fabrics produced by earlier phase deformation are easily modified by strain increment during later phase deformation. This paper attempts to elucidate the high-temperature phases of prograde metamorphism (Sim-Bim phase) and of retrograde metamorphism (Sb1 phase and Sb2−1 phase) from quartz grains included in garnet and plagioclase porphyroblasts. Quartz c-axis fabrics for all these phases are explained in terms of a type I crossed girdle, without (only rarely with) higher concentration in the principal axis of strain Y (X>Y>Z), that must have been produced by the activity of a dominant slip system such as rhomb and basal. As a result, the plastic deformation of quartz, which was responsible for the formation of the type I crossed girdle, occurred even under temperatures greater than 500°C and pressures a little greater than 10–11 kb, which correspond to the physical condition of the Sim-Bim phase. It has been assumed that a high strain rate (and/or low H2O content) caused rhomb and basal to be active as dominant slip systems in the subduction zone related to the formation of the Sambagawa schists even under high temperatures (> 500°C).  相似文献   

14.
Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%.  相似文献   

15.
Eloctromigraiion offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl, NO3 and SO4. A field experiment was designed to lest the efficacy of electromigration for preconcontrating dissolved SO42 in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feel apart (one 25 feel deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner lube of 2-inch FVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner lulling with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC Was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42-; was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to he a steady-state value of 2200 mg/L. compared lo the initial value in ground water of approximately 1150 mg/L. The results of this field lest should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.  相似文献   

16.
A direct aqueous injection capillary gas chromatography/flame ionization (GC/FID) procedure for the analysis of petroleum-contaminated water was developed and applied to seven water samples saturated with different petroleum products. Separation of C1 to C4 alcohols, C6 to C9 monoaromatics, MTBE, phenol, aniline, and other compounds, and the detection of BTEX compounds at concentrations at or below their maximum contaminant levels (MCLs) is reported. Among the test compounds analyzed, the only pair found to coelute were 1-butanol and benzene. A method for confirmation of alcohols and polar compounds in the presence of dissolved petroleum hydrocarbons was also evaluated. In this case, water samples were analyzed before and after purging. Polar compounds were found to be significant components of the water soluble fractions of commercial petroleum products.  相似文献   

17.
Abstract A water injection experiment was carried out by the scientific drilling program named the 'Nojima Fault Zone Probe' during the two periods 9–13 February and 16–25 March 1997. The pumping pressure at the surface was approximately 4 MPa. The total amount of injected water was 258 m3. The injection was made between depths of 1480 m and 1670 m in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m borehole drilled into the Nojima Fault zone. A seismic observation network was deployed to monitor seismic activity related to the water injections. Seismicity suddenly increased in the region not far from the injection hole 4 or 5 days after the beginning of each water injection. These earthquakes were likely to be induced by the water injections. Most of the earthquakes had magnitudes ranging from −2 to +1. Numerous earthquakes occurred during the first injection, but only one could be reliably located and it was approximately 2 km north of the injection site. Between the two injection periods, earthquakes concentrated in the region approximately 1 km northwest of the injection site. During and after the second injection experiment, earthquakes were located approximately 1.5 km west of the injection site. Those earthquakes were located approximately 3 km or 4 km from the injection point and between 2 km and 4 km in depth. Values of intrinsic permeability of 10−14–10−15 m2 were estimated from the time lapse of the induced seismic activity. The coefficient of friction in the area where the induced earthquakes occurred was estimated to be less than 0.3.  相似文献   

18.
The solubility of CO2CO fluids in a mid-ocean ridge basalt (morb) has been measured at 1200°C, 500–1500 bar, and oxygen fugacities between NNO and NNO-4. High oxygen fugacities, and thus CO2-rich fluids, were produced by using a starting material equilibrated at NNO, and Ag2C2O4 as the fluid source. Low oxygen fugacities were achieved by using graphite capsules, and MgCO3 as the fluid source. These graphite-saturated fluids have the lowest possibleC/O2CO ratio for a given pressure and temperature.

Experiments were run in a rapid-quench internally heated pressure vessel. Fluid compositions were measured using a simple vacuum technique and by Raman spectroscopy of fluid inclusions. The two techniques yielded comparable results. Fourier transform micro-infrared spectroscopy was used to identify and measure concentrations of dissolved volatiles in double-polished wafers of the quenched glasses. Carbonate was the only carbon-bearing species identified. Raman spectroscopic analysis of inclusion-free areas of glass confirmed the absence of dissolved molecular CO2, CO and carbon. The measured concentrations of dissolved CO2 in the glasses were proportional to the fugacity of CO2 during the experiments, calculated from the measured fluid compositions. The data were fit to the equationXCO2melt(ppm)= 0.492 fCO2 (bar).

The insolubility of CO, compared to CO2, may be related to the fact that dissolution of CO requires reduction of another species in the melt, whereas dissolution of CO2 does not. Due to the fact that CO will be an important component of natural CO fluids at low pressures and low oxygen fugacities, equilibrium dissolved CO2 contents will be less than calculated assuming pure CO2 fluids, but as theC/O2CO ratio in a pure CO fluid at fixed pressure and temperature is a direct function of oxygen fugacity, measurement of the oxygen fugacity of quenched glasses or trapped fluids in natural samples should allow saturation concentrations to be calculated. Dissolved CO2 contents of somemorb are less than expected if they were in equilibrium with pure CO2. These samples must, therefore, have been more reduced than average if they were fluid-saturated. Together with results from other studies of CO2 and H2O solubilities in basalt, the results of this study provide a comprehensive framework for modelling CO2 solution inmorb.  相似文献   


19.
Abstract
Determination of chemical constituent ratios allows distinction between two salinization mechanisms responsible for shallow saline ground water and vegetative-kill areas in parts of west Texas. Mixing of deep-basin (high Cl) salt water and shallow (low Cl) ground water results in saline waters with relatively low Ca/Cl, Mg/Cl, SO44/ Cl, Br/Cl, and NO3/Cl ratios. In scattergrams of major chemical constituents vs. chloride, plots of these waters indicate trends with deep-basin brines as high Cl end members. Evaporation of ground water from a shallow water table, in contrast, results in saline water that has relatively high Ca/Cl, Mg/Cl, SO4/Cl, and Br/CL ratios. Trends indicated by plots of this water type do not coincide with trends indicated by plots of sampled brines. Leaching of soil nitrate in areas with a shallow water table accounts for high NO3 concentrations in shallow ground water.  相似文献   

20.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号