首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
本文以波函数展开法为基础,给出了SV波与P波入射时大型引水隧道平面地震响应的解析解.并根据解析解,利用数值方法对建立的场地模型进行了计算分析,研究了隧道结构-水体体系的地震响应.重点讨论了入射波频率、入射角、衬砌力学性能对衬砌结构动力响应的影响.分析表明,大型引水隧道动力响应受入射波频率和入射角的影响较为明显,而衬砌力...  相似文献   

2.
SV波以大角度斜入射时,场地伴随更大的竖向地震作用,这很可能使得地铁隧道地震响应特点异于小角度斜入射情况。基于粘弹性人工边界理论,采用频域刚度矩阵法计算任意角度斜入射SV波的地震动输入等效节点力,通过ABAQUS有限元软件建立自由场模型,验证了0°、30°、40°和50°斜入射SV波地震动输入的准确性;在此基础上建立任意角度斜入射SV波作用下的地下双线并行圆形地铁隧道地震响应分析数值模型,从场地类别、隧道埋深和双隧道间距等方面分析SV波入射角度对隧道结构横断面地震响应的影响。研究表明:入射角度0°及略大于SV波临界角的入射角度是浅埋圆形地铁隧道结构抗震的最不利角度,尤其对于Ⅱ类场地,若仅在临界角以内研究衬砌结构的地震响应,将显著低估衬砌结构的动力响应;此外,隧道埋深对衬砌动弯矩、动轴力峰值具有显著影响,这种影响与场地类别密切相关;Ⅱ类和Ⅲ类场地中小隧道间距条件下隧道间的动力相互作用对衬砌结构动力响应具有一定的增大效应,而Ⅳ类场地中可忽略隧道间的动力相互作用对衬砌结构动力响应所产生的影响。  相似文献   

3.
周凤玺  高令猛  马强 《地震学报》2019,41(2):269-276
以地下隧道对附近场地动力特性的影响为研究目标,基于弹性波动理论,利用波函数展开法和镜像法,分析了弹性半空间中圆形衬砌隧道对平面SH波入射产生的散射问题,得到了地下圆形衬砌隧道附近场地位移的级数解答。通过数值算例分析了地下圆形衬砌隧道对场地动力响应的影响,重点考察了SH波入射角度、入射频率和隧道埋深、衬砌刚度对隧道周围土体动力响应随深度变化的影响规律。结果表明,地下隧道对沿线场地的地下地震动影响显著。  相似文献   

4.
以实际工程为背景,在模型试验结果和数值模拟结果验证合理的基础上,通过建立三维数值模型,研究兰州人工波在不同激振方向下坡-隧体系动力响应规律,通过小波包变换从能量和频域角度对衬砌结构动力响应规律进行分析。研究结果表明:水平、竖直面内垂直隧道轴向(X、Z)的地震波在隧道最大埋深处引起较大响应,水平面平行于隧道轴向的地震波(Y)对埋深较浅的洞口处的结构最为不利。频率在0~12.5 Hz范围内的低频波是引起隧道结构响应的主要波段,该频段中竖直向地震波(Z)能量相较于其他方向地震波能量占比最高。地震作用中衬砌结构的存在对坡体内的围岩变形有一定的抑制效应。X、Y向地震波容易引起坡脚附近的围岩发生剪切破坏,Y向地震波对隧道洞口段仰坡的稳定性影响最大;Z向地震波容易造成坡顶附近区域围岩的拉伸破坏,且对隧道拱顶附近产生最不利响应。研究成果对浅埋偏压双联拱隧道的抗震优化设计具有借鉴意义。  相似文献   

5.
研究输水隧洞的地震响应问题对引水工程的抗震设计和施工是必要的。采用波动解法,得到了P波入射时水下输水隧洞平面地震响应的解析解。通过对场地模型的分析,给出了水下场地-隧洞衬砌-隧洞内水体体系的地震响应。并着重讨论了P波入射时隧洞埋深和地表水深对衬砌结构动力响应的影响。研究表明,P波入射引起的水下输水隧洞地震响应随着地表水深的增大而增大;低频P波入射时,随着隧洞埋深的增大,隧洞衬砌的动应力逐渐增大,动位移则逐渐减小,而高频P波入射时,隧洞衬砌的动力响应随着隧洞埋深的增大而呈波动式变化。  相似文献   

6.
地下综合管廊由于埋深较浅,Rayleigh波能量对综合管廊的地震反应具有重要影响。建立非线性有限元三维动力数值模型,通过边界脉冲荷载生成Rayleigh波,研究Rayleigh波平行入射条件下综合管廊结构的加速度、位移和内力等响应特性,然后分别研究管廊断面尺寸、覆土厚度、Rayleigh波入射角和土体本构等因素对管廊结构动力响应特征的影响。研究结果表明:Rayleigh波平行入射作用下,综合管廊结构顶板受力表现为时而受拉以及时而受压,Rayleigh波传递过程对管廊结构受力产生不利影响;当Rayleigh波入射方向与管廊结构轴向夹角越接近90°,引起的动力响应相对越大;土体采用摩尔-库伦模型(MC模型)时,由于不能考虑材料滞回环属性对能量的耗散,相对于小应变硬化模型(HSS模型)模拟出的管廊结构内力和位移响应要大;管廊埋深越浅,结构位移响应幅值和内力响应幅度变化越大;不同截面管廊结构的纵向位移差别不大,竖向位移则随截面增大而减小,表明随着截面刚度的提高,抗变形能力增强;管廊结构内力峰值变化量随截面增大而减小,单仓结构在Rayleigh波作用下的内力响应最为显著。  相似文献   

7.
水域隧道地震响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文基于Biot动力固结理论和弹性动力学理论,考虑海床(土壤)的两相性、黏弹性人工边界及流(水)-固耦合作用,建立了隧道-土-流体相互作用的力学模型,讨论了P波作用下有无水的情况以及水深、水域隧道埋深、海床土性质和地震波入射角等因素对隧道及其周围海床应力的影响。结果表明:隧道周围海床土的孔隙水压力和隧道内应力随着水深的增加而增加;地震波特性和海床土特性对隧道的内应力和海床土的孔隙水压力均有较大的影响;海床土的渗透性和隧道埋深对隧道的内应力影响较小,而对隧道周围海床土的孔隙水压力影响较大;地震动的入射角对隧道的内应力和隧道附近土层的孔隙水压力均有较大影响。   相似文献   

8.
采用波函数展开法,通过SH波入射均匀半空间中二维埋置半圆形刚柔复合基础-单质点模型,推导土-刚柔复合基础-上部结构动力相互作用的解析解,并验证解的正确性。研究表明:基础柔性对于系统响应峰值与系统频率有较大影响。考虑基础柔性后,上部结构相对响应峰值相比全刚性基础结果均有一定减小,且系统频率也会产生向低频偏移的现象。  相似文献   

9.
采用波函数展开法及边界离散的方法给出任意断面形状的地下透镜体对平面SH波散射的半解析解,利用蒙特卡罗方法随机模拟产生30组透镜体断面样本,通过对30组具有同一统计特征的任意断面地下透镜体在平面SH波入射下地表动力响应极值的统计分析并与相应椭圆透镜体解答比较,研究透镜体断面形状随机性对平面SH波散射的影响。研究表明,透镜体断面形状随机性对地表动力响应极值具有重要影响。以长短轴比为4的椭圆形透镜体为例,当断面矢径的变异系数为0.1时,样本地表位移响应极值的最大值远大于对应椭圆透镜体解的极值,平均可达47.46%。且增加幅度随着透镜体介质与半空间介质波速差距增大而增大。透镜体埋深越小,增加幅度越大。  相似文献   

10.
采用间接边界元法(IBEM)结合"分区契合"技术,研究qP波入射下横观各向同性(TI)场地中衬砌隧道的动力响应问题。方法充分利用半空间和全空间动力格林函数在分别构造含孔半无限空间域和闭合域内散射波场方面的优势,将含有衬砌隧道的层状弹性半空间分解为含孔半无限空间域和一个环形衬砌闭合域来分别进行波场构造,有效地降低了求解时间和存储量。文中验证方法的正确性,并以均匀TI半空间和基岩上单一TI土层为例,计算分析弹性半空间场地中隧道衬砌内表面动应力放大问题。结果表明qP波入射下,TI介质与各向同性介质场地中埋置衬砌隧道的动力响应差异显著,TI介质参数的变化导致场地动力特性的改变,进而改变场地与衬砌隧道的动力相互作用机制,显著影响着衬砌内表面动应力的大小及其空间分布。  相似文献   

11.
双洞八车道大断面隧道地震动力响应数值分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究双洞八车道超大断面隧道在地震力作用下的动力响应特征,以平潭综合实验区牛寨山隧道为工程背景,建立双洞八车道隧道的三维有限元数值计算模型。采用时程分析方法,在模型底部输入水平向地震动荷载,计算隧道结构在地震动荷载作用下的响应,包括位移、加速度及应力的变化。结果表明:最大水平和竖向位移出现在拱顶处,南线浅埋隧道整体呈剪切响应;隧道最大水平加速度出现在南线隧道拱顶偏左处,最大垂直加速度出现在南线隧道拱顶偏右处,南线隧道洞口由于浅埋,关键部位响应差较北线要大;南线的右拱肩埋深最浅,该部位拉应力最大,而北线拱顶的拉应力区最大,拱脚也出现明显的拉或压应力。建议在隧道洞口段的拱顶、拱脚及埋深最浅的部位应加强抗震设防。  相似文献   

12.
埋地双排复合式管体结构在SH波作用下的动力分析   总被引:1,自引:0,他引:1  
以波动理论为基础,采用复变函数法,给出了地下双排复合式管体结构在SH波作用下的解析解。分析了入射波角度、频率变化,管体埋深、内管的厚度变化等参数对管体动应力集中的影响。结果表明:复合式管体内侧的动应力集中峰值明显高于外侧;高频入射时,双排管体在给定距离之间的相互影响较大,动应力集中峰值向邻侧偏移;复合式管体内管越薄,动应力集中峰值越大;垂直入射时,动应力集中峰值受埋深的影响呈周期性变化。  相似文献   

13.
结合黏弹性人工边界的时域波动输入方法和显式有限元法,设计了含垂直断层三维场地的SH波输入方法。基于建立的输入方法,研究了垂直断层对隧道地震响应的影响,并通过自由场算例验证了该方法具有较好精度。数值模拟结果表明:对于断层迎波侧的隧道结构,断层会对其地震动响应产生显著的放大作用,对于断层逆波侧的隧道结构,断层会对其产生隔离地震动的作用;相对周围围岩,断层介质的剪切波速越小,其产生的放大效应和隔震效果也会越显著;断层宽度越小,其对隧道地震动响应的影响范围也就越小,但是断层宽度的变化对于断层两侧隧道的地震动响应的影响并不明显。  相似文献   

14.
利用Midas-GTS建立边坡-隧道结构模型,对宝兰客专黄土隧道洞口段在地震作用下的动力响应特征进行数值模拟研究,分析边坡进洞高程对洞口段动力响应的影响,在此基础上讨论隧道洞口段受力变形特征及其分布规律。研究表明:坡面最大位移随着仰坡坡度的增大而增大;仰坡坡度越大、进洞高程越高,隧道洞口段的衬砌变形就越大;坡面和衬砌加速度最大值随着仰坡坡度的增大而减小;当洞口段隧道长度Y≥60 m时,进洞高程越大,衬砌加速度越小。洞口段仰拱最大主应力整体大于拱顶最大主应力,但二者变化趋势基本一致;在洞口段0~20 m范围内,由于坡隧系统相互作用交互影响,衬砌结构受力情况较为复杂。  相似文献   

15.
目前城市核心区交叠紧邻的隧道群大量涌现,其抗震安全性问题日益突出,但近邻隧道之间以及与地层的动力相互作用机制尚不清晰.本文针对饱和地层浅埋平行隧道,基于Biot两相介质理论,采用边界积分方程法分别建立了饱和地层水平和竖向双线隧道动力作用分析模型,并与典型算例精确解对比验证了本模型的有效性;在此基础上,研究了SV波入射频...  相似文献   

16.
地下结构的地震响应主要取决于由地震波传播产生的土体变形与土结相互作用。剪切波传播过程中将会引起隧道衬砌的椭圆化变形,进而降低衬砌有效承载力。剪切波作用下的深埋圆形隧道可认为处于均质的纯剪状态,基于相对刚度法的拟静力解析解可充分考虑土结相互作用对隧道结构内力的影响。基于此,本文将通过有限元数值分析获得的自由场地地基变形引入不滑移状态下深埋圆形隧道内力求解公式,并结合二维和三维数值模拟途径,将动力分析结果与解析解结果进行对比分析,以评价各种解析方法的适用性和数值途径的可靠性。  相似文献   

17.
采用ABAQUS有限元分析软件,以北京地铁7号线区间隧道作为工程背景,考虑到衬砌与土体之间的相互作用,建立了地基土-隧道体系的整体有限元模型,针对不同断层类型工况下,隧道结构在不同埋深下的反应进行了系统分析。研究结果表明:隧道结构处于弹性阶段时,在规范规定的取值范围内适当地减小隧道埋深可以减轻结构的反应;在较大断层位错作用下,隧道结构产生的损伤区域长度,以及出现损伤最严重的位置不受埋深的影响;在逆断层下,隧道埋深为10m时,结构震害程度最为严重;在正断层下,隧道埋深为8m时,结构震害程度最为严重;在走滑断层下,隧道埋置越深结构受到的震害程度越严重。  相似文献   

18.
基于粘弹性人工边界条件理论,将地震动输入转化为作用于人工边界的等效荷载来实现波动的输入,利用有限元软件ADINA建立了海水-沉管隧道-海床的整体分析模型,在模型的海水与海床的交界面处设置流固耦合边界来考虑海水与海床的流固耦合动力反应,分析了地震P波斜入射作用下,不同入射角度对沉管隧道结构的动力响应的影响。结果表明:地震动的入射角度对海底沉管隧道结构的动力反应影响很大,而且入射角在某个范围内,水平向和竖向地震响应有着不同的影响程度;随着入射角度不断增大,结构在竖向的动力响应明显减小,而在水平向的动力响应是先增大后减小。因此,对海底沉管隧道进行抗震设计分析时,应该考虑地震动斜入射对结构动力响应的影响。  相似文献   

19.
采用间接边界元法,研究结构-土-结构动力相互作用对结构系统频率的影响。数值分析表明,与不考虑相邻结构的结果相比,结构-土-结构动力相互作用可能增大或减小结构的系统频率,SH波垂直入射时,影响程度达5%,SV波垂直入射时,影响程度达3%。随着结构间距离的增大,结构-土-结构动力相互作用对结构系统频率的影响程度并不单调下降,还与场地的动力特性和结构的动力特性有关。结构-土-结构动力相互作用对结构系统频率的影响可能对结构健康监测结果造成一定影响,值得注意。  相似文献   

20.
在ABAQUS黏弹性人工边界时域波动方法的基础上,首先运用等效应力输入方法实现地震SV波倾斜入射,半空间算例验证该方法具有较好的计算精度,进而基于所建立的斜入射方法研究地震波斜入射对海河沉管隧道地震响应的影响。计算结果表明:SV波斜入射情况下,沉管隧道的地震响应规律与垂直入射时具有明显差异;随入射角增加,沉管隧道结构应力增大,应力较大点出现在沉管隧道的四个角点及隔墙与底板、顶板的连接处,其中中隔墙为最薄弱点;随入射角增加,侧墙和隔墙的相对最大水平位移增大,其中中隔墙位移最大;随入射角增加,沉管隧道结构竖向加速度峰值明显增大。因此在沉管隧道结构抗震设计中应考虑地震波斜入射的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号