首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
长白山天池火山研究进展   总被引:25,自引:0,他引:25  
长白山天池火山距今4105年以来至少发生过两次大规模喷发。其最近的一次大喷发发生于公元850~1040年间。估计了这次喷发的喷发物体积和C1,F,S等的释放量。数值模拟表明,该次大喷发对全球气候变化产生过重要影响,最近的地球物理探测结果显示,在该火山下面存在地壳和上地幔双层岩浆房。认为该火山现在仍是一座具潜在灾害性大喷发危险的现代活动火山。  相似文献   

2.
长白山天池火山是中新世以来多次喷发并造成严重灾害的火山。通过十几年的火山地质及火山地震监测研究认为长白山天池火山近期不会马上喷发,但它是一座具有潜在喷发危险性的活动火山,并提出建立长白山火山观测站的重要意义,讨论了天地火山密码的破译需要调动各方面有利因素和有利条件。  相似文献   

3.
长白山天池火山——一座具潜在喷发危险的近代火山   总被引:42,自引:10,他引:42       下载免费PDF全文
通过对长白山天池火山近代喷发历史、喷发规模、喷发物类型的调查和研究,提出该火山是一座具潜在喷发危险的大型近代活动火山.建议开展对该火山的动态监测和系统研究.  相似文献   

4.
长白山天池火山的危险性和火山碎屑流灾害评估   总被引:6,自引:0,他引:6  
本文以长白山天池火山1215AD大喷发为参照系,采用了“以古论今”的历史分析方法,对天池火山的危险性和火山碎屑流灾害进行了评估。认为长白山天池火山是具有潜在喷发能力的高危险火山,给出了长白山天池火山的火山碎屑流灾害预测分区图,为各级政府部门合理制定土地使用规划和防灾活动提供了理论依据。  相似文献   

5.
长白山火山活动的现状和未来展望   总被引:5,自引:0,他引:5  
长白山天池火山是中新世以来,特别是中更新世以来多次喷发并造成严重灾害的火山,是一座具有潜在喷发危险性的活动火山,文章主要阐述了全新世和近代火山活动及其喷发物,并对火山的现代活动与未来火山活动及其灾害作了评估。  相似文献   

6.
长白山天池火山减灾对策初探   总被引:7,自引:0,他引:7  
国内外专家学者认为,长白山天池火山是一座具潜在灾害性喷发危险的活火山,因此制定火山减灾对策理应提到议事日程。针对天池火山研究现状和火山灾害特点,制定了火山活动各阶段的减灾对策。中长期阶段应加强火山监测与研究和火山知识宣传工作,采取必要的工程防护措施,重大工程进行火山安全性评价,制定火山喷发应急预案;短期阶段请求国际火山流动监测台网给予支援;临近喷发阶段重点是有组织的撤离;喷发及其后阶段应及时救灾抢险,对火山喷发趋势进行科学判定,合理地重建家园。  相似文献   

7.
归纳总结2017年度全球81座活火山的活动情况,共计活动1058座次,平均每周记录20座活火山的活动信息。根据火山潜在喷发的危险性和火山活动的强弱程度对上述火山进行分级描述,火山活动主要反映了地球表层的构造活动,其中大角度俯冲带的弧后火山最为强烈,小角度的俯冲带、拉张裂谷和走滑为主的板块边界火山活动较为平静,火山活动频繁的印度尼西亚岛链是受灾最为严重的区域。预计全球火山活动将进一步加剧,印尼岛链受火山灾害威胁的程度依然较大。位于印尼岛链巴厘岛上的阿贡火山自2017年9月开始活动以来,整个喷发过程极具代表性,监测阿贡火山喷发过程可为全球典型火山喷发事件研究提供参考。  相似文献   

8.
中国火山危险性等级与活动性分类   总被引:4,自引:3,他引:4  
介绍了中国大陆全新世活动火山喷发危险性的评价与活动性分类。火山喷发危险性评价是进行火山活动性分类的基础,参照国外火山活动度水平与火山警报等级,根据火山动力背景特征与火山前兆异常特征确定了中国火山喷发危险性评价等级,它们是安全、注意、警惕、警报、危险、灾害、灾难等7级。根据火山活动的危险性,将中国火山的活动性分为4类:1)处于活动状态的火山——长白山天池火山,已经进入扰动期;2)有活动迹象的火山——腾冲火山,仍然处于平静状态,存在潜在的喷发危险;3)有潜在活动可能的火山,包括五大连池、镜泊湖与海口火山,各种地球物理、地球化学观察都处于背景值范围;4)活动性不明的火山  相似文献   

9.
通过对2016年全球活动火山监测信息的统计,2016年共有96座火山记录到喷发活动,主要分布在环太平洋俯冲带及印度板块与欧亚板块碰撞边界上。火山预警等级共有4个,可以标识火山的危险程度,本文根据火山每个预警等级在全年52次监测信息报道中的出现次数,将96座活动火山按危险程度划为4类,并对每类的火山活动作出了详细描述。2016年的火山喷发也造成了人员伤亡和财产损失,印度尼西亚是受火山灾害影响最严重的国家。此外,根据火山灰柱海拔高度的整理及近年活动火山数量的调查,推测2016年的火山活动仅会使火山附近区域的天气受到影响,应不会引起全球性的气候异常。   相似文献   

10.
火山喷发是一种危害严重的自然灾害,全球有近20%的人口生活在火山喷发潜在危险的阴影之下.据统计,近400年来火山喷发已直接或间接导致约27万人死亡.决定火山灾害损失大小的因素众多,在对火山灾害进行研究时就必需弄清楚这些因素对火山灾害的影响程度,也就是它们对火山灾害损失影响的权重.权重分析可以为进一步的火山灾害研究提供基础的数据资料.  相似文献   

11.
In a companion paper, a methodology for ranking volcanic hazards and events in terms of risk was presented, and the likelihood and extent of potential hazards in the Auckland Region, New Zealand investigated. In this paper, the effects of each hazard are considered and the risk ranking completed. Values for effect are proportions of total loss and, as with likelihood and extent, are based on order of magnitude.Two outcomes were considered – building damage and loss of human life. In terms of building damage, tephra produces the highest risk by an order of magnitude, followed by lava flows and base surge. For loss of human life, risk from base surge is highest. The risks from pyroclastic flows and tsunami are an order of magnitude smaller. When combined, tephra fall followed by base surge produces the highest risk. The risks from lava flows and pyroclastic flows are an order of magnitude smaller. For building damage, the risk from Mt. Taranaki volcano, 280 km from the Auckland CBD, is largest, followed by Okataina volcanic centre, an Auckland volcanic field eruption centred on land, then Tongariro volcanic centre. In terms of human loss, the greatest risk is from an Auckland eruption centred on land. The risks from an Auckland eruption centred in the ocean, Okataina volcanic centre, and Taupo volcano are more than an order of magnitude smaller. When combined, the risk from Mt. Taranaki remains highest, followed by an Auckland eruption centred on land. The next largest risks are from the Okataina and Tongariro volcanic centres, followed by Taupo volcano.Three alternative situations were investigated. As multiple eruptions may occur from the Auckland volcanic field, it was assumed that a local event would involve two eruptions. This increased risk of a local eruption occurring on land so that it was equal to that of an eruption from Mt. Taranaki. It is possible that a future eruption may be of a similar, or larger size, to the previous Rangitoto eruption. Risk was re-calculated for local eruptions based on the extent of hazards from Rangitoto. This increased the risk of lava flow to greater than that of base surge, and the risk from an Auckland land eruption became greatest. The relative probabilities used for Mt. Taranaki volcano and the Auckland volcanic field may only be minimum values. When the probability of these occurring was increased by 50%, there was no change in either ranking.Editorial responsibility: J. S. Gilbert  相似文献   

12.
长白山天池火山地震类型及火山活动性的初步研究   总被引:3,自引:0,他引:3  
2002年以来,长白山天池火山区出现了地震活动增强、地形变加剧和多种地球化学异常等现象,火山口附近发生的多次有感地震在社会上产生了较大影响。本文利用2002年以来的流动地震观测资料,采用频谱分析、时频分析和多台站资料对比的方法,对火山区地震事件的类型进行了分析;对火山活动的危险性进行了初步研究。结果表明,目前天池火山区出现的大量地震活动仍然属于火山构造地震,少量台站地震记录中表现出的低频特征主要是由于局部介质影响造成的,排除了长周期地震引起的可能。尽管长白山天池火山地震活动明最增强,震群活动较为频繁,但仍属于岩浆活动的早期阶段,短期内发生火山喷发的危险性较小。  相似文献   

13.
Phenomena occurring since 1982 in the Phlegraean Fields, interpreted as precursors of a potential renewal of volcanic activity, have forced us to anticipate some conclusions of a volcanic-hazard study based on the reconstruction of past eruptions in the area, to serve as basis for civil defense preparedness plans. The eruptive history of the Phlegraean Fields suggests a progressive decrease with time in the strength of eruptive phenomena paralleling a migration of vents towards the center of the Phlegraean caldera. Studies concerning the volcanic risk zonation were therefore concentrated on activities during the last 4,500 years and two eruptions (Monte Nuovo and Agnano Monte Spina), that occurred in 1538 and 4,400 years B.P., respectively were selected as the «reference eruptions» from which possible eruption scenarios were drawn.  相似文献   

14.
Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection (Dipartimento della Protezione Civile). The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard zone, since there are some important public structures not considered in the current Red Zone that could be exposed to flow risk; c) Modern wind records clearly indicate that at the time of a future eruption winds could blow not only from the west, but also from the east, so that the Yellow Zone (the area with the potential to be affected by significant tephra fall deposits) must be redefined. As a result the relationship between the Yellow Zone and Green Zone (the area within and beyond which the impact of tephra fall is expected to be insignificant) must be reconsidered mainly in the Naples area; d) The May 1998 landslide, caused in the Apennine region east of the volcano by continuous rain fall, led to the definition of a zone affected by re-mobilisation of tephra (Blue Zone), confined in the Nola valley. However, as described in the 1631 chronicles of the eruption, if generation of debris flows occurs during and after a future eruption, a much wider region east of the Somma-Vesuvius must be affected by events of this type.  相似文献   

15.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

16.
琼北地区的火山活动以裂隙喷溢为主,晚更新世道堂期的射气岩浆喷发形成了众多的低平火山口,全新世雷虎岭期火山口主要分布于石山、永兴一带,沿NW向长流-仙沟断裂带分布。近2年在石山一带的射气岩浆喷发物中揭露出多条大规模的断裂,这些断裂带的单个断面虽然类似于地震活断层,但它们缺少断错地貌和断层方向的稳定性,一些断层组合成弧形。尽管这些断裂断面清晰,断距达4m,仍被认为是伴随火山喷发活动后期塌陷而形成的次级断层。此外,位于非火山岩分布区跨长流-仙沟断裂带的钻孔联合剖面探测表明,该断裂带在晚更新世晚期以来不活动。长流-仙沟断裂带晚更新世晚期以来的活动主要表现在作为深部岩浆的上涌通道。  相似文献   

17.
The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109?±?15 and 90?±?11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58?±?4 and 47?±?7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68?±?7 and 65?±?8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32?±?3 and 19?±?2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.  相似文献   

18.
龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估   总被引:1,自引:0,他引:1  
空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法。本文根据改进的Suzuki(1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序。通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性。根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图。本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号