首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer’s permeability (semi-permeable and impermeable), of the boundary condition at the aquifer’s submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.  相似文献   

2.
An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five‐layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology.  相似文献   

3.
In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ18O and δ2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l−1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50–60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ18O less than −7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ18O about −7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.  相似文献   

4.
Abstract

An analytical solution is developed to delineate the capture zone of a pumping well in an aquifer with a regional flow perpendicular to a stream, assuming a leaky layer between the stream and the aquifer. Three different scenarios are considered for different pumping rates. At low pumping rates, the capture zone boundary will be completely contained in the aquifer. At medium pumping rates, the tip of the capture zone boundary will intrude into the leaky layer. Under these two scenarios, all the pumped water is supplied from the regional groundwater flow in the aquifer. At high pumping rates, however, the capture zone boundary intersects the stream and pumped water is supplied from both the aquifer and the stream. The two critical pumping rates which separate these three scenarios, as well as the proportion of pumped water from the stream and the aquifer, are determined for different hydraulic settings.

Editor D. Koutsoyiannis; Associate editor A. Koussis

Citation Asadi-Aghbolaghi, M., Rakhshandehroo, G.R., and Kompani-Zare, M., 2013. An analytical approach to capture zone delineation for a well near a stream with a leaky layer. Hydrological Sciences Journal, 58 (8), 1813–1823.  相似文献   

5.
Estimation of hydraulic parameters is essential to understand the interaction between groundwater flow and seawater intrusion. Though several studies have addressed hydraulic parameter estimation, based on pumping tests as well as geophysical methods, not many studies have addressed the problem with clayey formations being present. In this study, a methodology is proposed to estimate anisotropic hydraulic conductivity and porosity values for the coastal aquifer with unconsolidated formations. For this purpose, the one-dimensional resistivity of the aquifer and the groundwater conductivity data are used to estimate porosity at discrete points. The hydraulic conductivity values are estimated by its mutual dependence with porosity and petrophysical parameters. From these estimated values, the bilinear relationship between hydraulic conductivity and aquifer resistivity is established based on the clay content of the sampled formation. The methodology is applied on a coastal aquifer along with the coastal Karnataka, India, which has significant clayey formations embedded in unconsolidated rock. The estimation of hydraulic conductivity values from the established correlations has a correlation coefficient of 0.83 with pumping test data, indicating good reliability of the methodology. The established correlations also enable the estimation of horizontal hydraulic conductivity on two-dimensional resistivity sections, which was not addressed by earlier studies. The inventive approach of using the established bilinear correlations at one-dimensional to two-dimensional resistivity sections is verified by the comparison method. The horizontal hydraulic conductivity agrees with previous findings from inverse modelling. Additionally, this study provides critical insights into the estimation of vertical hydraulic conductivity and an equation is formulated which relates vertical hydraulic conductivity with horizontal. Based on the approach presented, the anisotropic hydraulic conductivity of any type aquifer with embedded clayey formations can be estimated. The anisotropic hydraulic conductivity has the potential to be used as an important input to the groundwater models.  相似文献   

6.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

7.
The characterization of heterogeneity in hydraulic conductivity (K) is a major challenge for subsurface remediation projects. There are a number of field studies that compare the K estimates obtained using various techniques, but to our knowledge, no field‐based studies exists that compare the performance of estimated K heterogeneity fields or the associated characterization costs. In this paper, we compare the costs of characterizing the three‐dimensional K heterogeneity and its uncertainty estimates of a glaciofluvial aquifer‐aquitard sequence at a 15 m × 15 m × 18 m field site situated on the University of Waterloo campus. We compare geostatistical analysis of high resolution permeameter K data obtained from repacked core samples in five boreholes and hydraulic tomography analysis of four pumping tests consisting of up to 41 monitoring points per test. Aside from the comparison of costs, we also assess the performance of each method by predicting several pumping tests. Our analysis reveals that hydraulic tomography is somewhat more costly than the geostatistical analysis of high resolution permeameter K data due to the higher capital costs associated with the method. However, the equipment may be reused at other sites; hence these costs may be recovered over the life of the equipment. More significantly, hydraulic tomography is able to capture the most important features of the aquifer‐aquitard sequence leading to more accurate predictions of independent pumping tests. This suggests that more robust remediation systems may be designed if site characterization is performed with hydraulic tomography.  相似文献   

8.
Macro-pores such as crab burrows are found commonly distributed in salt marsh sediments. Their disturbance on the soil structure is likely to influence both pore water flows and solute transport in salt marshes; however, the effects of crab burrows are not well understood. Here, a three-dimensional model simulated tidally driven pore water flows subject to the influence of crab burrows in a marsh system. The model, based on Richards’ equation, considered variably saturated flow in the marsh with a two-layer soil configuration, as observed at the Chongming Dongtan wetland (Shanghai, China). The simulation results showed that crab burrows distributed in the upper low-permeability soil layer, acting as preferential flow paths, affected pore water flows in the marsh particularly when the contrast of hydraulic conductivity between the lower high-permeability soil layer and the overlying low-permeability soils was high. The burrows were found to increase the volume of tidally driven water exchange between the marsh soil and the tidal creek. The simulations also showed improvement of soil aeration conditions in the presence of crab burrows. These effects may lead to increased productivity of the marsh ecosystem and enhancement of its material exchange with coastal waters.  相似文献   

9.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

10.
A Potential-Based Inversion of Unconfined Steady-State Hydraulic Tomography   总被引:1,自引:0,他引:1  
The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.  相似文献   

11.
In Belgium, IWVA uses managed aquifer recharge (MAR) to recharge the aquifer with treated wastewater generated from the communities to sustain the potable water supply on the Belgian coast. This MAR facility is faced with a challenge of reduced infiltration rates during the winter season when pond water temperatures near 4°C. This study involves the identification of the predominant factor influencing the rate of infiltration through the pond bed. Several factors, including pumping rates, natural recharge, tidal influences of the North Sea and pond-water temperature, were identified as potential causes for variation of the recharge rate. Correlation statistics and linear regression analysis were used to determine the sensitivity of the infiltration rate to the aforementioned factors. Two groundwater flow models were developed in visual MODFLOW to simulate the water movement under the pond bed and to obtain the differences in flux to track the effects of variation of hydraulic conductivity during the two seasons. A 32% reduction in vertical hydraulic gradient in the top portion of the aquifer was observed in winter, causing the recharge rates to fluctuate. Results showed that water temperature caused a 30% increase in hydraulic conductivity in summer as compared with winter and has the maximum impact on infiltration rate. Cyclic variations in water viscosity, occurring because of seasonal temperature changes, influence the saturated hydraulic conductivity of the pond bed. Results from the models confirm the impact on infiltration rate by temperature-influenced hydraulic conductivity.  相似文献   

12.
A thin layer of fine‐grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low‐flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank‐filtration (RBF) sites. Results from a numerical groundwater‐flow model indicate that a low‐permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2‐cm thick, low‐permeability veneer is present on the bed surface. Increasing thickness of the low‐permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three‐orders‐of‐magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field‐measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low‐permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low‐permeability sediment veneer, as well as central‐pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater flow and contaminant transport are strongly influenced by hydrogeological spatial variation. Understanding the textural heterogeneity of aquifer and aquitard units is critical for predicting preferential flow pathways, but is often hindered by sparse hydrogeological data, widely spaced data points, and complex stratigraphy. Here, we demonstrate the application of a relatively new air permeameter technology, providing a cost-effective, rapid alternative for characterizing hydrostratigraphic units in the field. The aim of this research is to (1) characterize the variation of saturated hydraulic conductivity across shallow-marine hydrostratigraphic units of the Whanganui Basin, New Zealand, and (2) assess the variation of saturated hydraulic conductivity within individual hydrostratigraphic units and relate these changes to facies and depositional environments. Results suggest heterogeneity within fine-grained aquitard units is controlled by bioturbation, whereby burrowing, ingestion and defecation results in grain size segregation and differential micrite cementation. Coarse-grained heterolithic aquifer facies display sharp changes in permeability across planar to cross-bedded sets, related to current and wave energy fluctuations within shallow-marine depositional settings. Bedding plane orientation creates high permeability zones that promotes down dip subsurface flow. Down dip gradation of coarse-grained nearshore facies into fine-grained shelf facies along the paleo shoreline-shelf transect is suggested to promote lateral and vertical groundwater flow within the basin fill. Air permeameter techniques have potential for application within groundwater basins around the world, providing datasets that facilitate greater understanding of groundwater systems, informing practices and policies for targeted water quality management.  相似文献   

14.
Estimation of aquifer hydraulic properties is essential for predicting the response of an aquifer to extractions and hence estimating the availability of the groundwater resources. Aquifer tests are commonly used for the estimation of aquifer properties; however, they can be expensive and often only characterize the short‐term response of the aquifer. This paper presents a time series modelling approach to estimating aquifer hydraulic properties. It is applied to 42 bores monitoring an unconfined aquifer within an irrigation region of south‐eastern Australia, and the resulting probabilistic estimate of hydraulic properties are evaluated against pumping test estimates. It is demonstrated that the time series modelling can provide a reliable estimate of the hydraulic properties that are typical of a very long‐term pumping test. Furthermore, the application of the time series modelling to 42 bores provided novel insights into the aquifer heterogeneity. We encourage others to further test the approach and the source code is available from: http://www.mathworks.com/matlabcentral/fileexchange/48546‐peterson‐tim‐j‐groundwater‐statistics‐toolbox Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Closed‐form solutions are proposed for natural seepage in semiconfined (leaky) aquifers such as those existing below the massive Champlain Sea clay layers in the Saint‐Lawrence River Valley. The solutions are for an ideal horizontal leaky aquifer below an ideal aquitard that may have either a constant thickness and a constant hydraulic head at its surface, or a variable thickness and a variable hydraulic head at its surface. A few simplifying assumptions were needed to obtain the closed‐form solutions. These have been verified using a finite element method, which did not make any of the assumptions but gave an excellent agreement for hydraulic heads and groundwater velocities. For example, the difference between the two solutions was smaller than 1 mm for variations in the 5 to 8 m range for the hydraulic head in the semiconfined aquifer. Note that fitting the hydraulic head data of monitoring wells to the theoretical solutions gives only the ratio of the aquifer and aquitard hydraulic conductivities, a clear case of multiple solutions for an inverse problem. Consequently, field permeability tests in the aquitard and the aquifer, and pumping tests in the aquifer, are still needed to determine the hydraulic conductivity values.  相似文献   

16.
A main purpose of groundwater inverse modeling lies in estimating the hydraulic conductivity field of an aquifer. Traditionally, hydraulic head measurements, possibly obtained in tomographic setups, are used as data. Because the groundwater flow equation is diffusive, many pumping and observation wells would be necessary to obtain a high resolution of hydraulic conductivity, which is typically not possible. We suggest performing heat tracer tests using the same already installed pumping wells and thermometers in observation planes to amend the hydraulic head data set by the arrival times of the heat signals. For each tomographic combinations of wells, we recommend installing an outer pair of pumping wells, generating artificial ambient flow, and an inner well pair in which the tests are performed. We jointly invert heads and thermal arrival times in 3-D by the quasi-linear geostatistical approach using an efficiently parallelized code running on a mid-range cluster. In the present study, we evaluate the value of heat tracer versus head data in a synthetic test case, where the estimated fields can be compared to the synthetic truth. Because the sensitivity patterns of the thermal arrival times differ from those of head measurements, the resolved variance in the estimated field is 6 to 10 times higher in the joint inversion in comparison to inverting head data only. Also, in contrast to head measurements, reversing the flow field and repeating the heat-tracer test improves the estimate in terms of reducing the estimation variance of the estimate. Based on the synthetic test case, we recommend performing the tests in four principal directions, requiring in total eight pumping wells and four intersecting observation planes for heads and temperature in each direction.  相似文献   

17.
Berg SJ  Hsieh PA  Illman WA 《Ground water》2011,49(6):815-829
For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated.  相似文献   

18.
19.
Lu C  Chen Y  Luo J 《Ground water》2012,50(3):386-393
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.  相似文献   

20.
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation.

Aquifers with an average hydraulic conductivity of 0.55 m day−1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day−1). These aquifers are separated by an aquitard (0.065 m day−1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method.

Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4–50 m2 day−1) and is capable of producing from less than 5 to over 230 kl day−1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived.

The overlying aquitard has a low transmissivity (< 1 m2 day−1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m2 day−1 to over 10 m2 day−1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl−1 to greater than 250000 mgl−1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号