首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
电场穿透作为强烈地磁活动期间太阳风-磁层-电离层电动力学耦合的重要形式,近年来一直是空间物理学最为活跃的课题之一.在过去的近40年里人们一直关注于观测证据的寻找以及物理过程的模拟,“电场穿透效率”这一重要定量化指标直到最近几年才得到重视.本文定义赤道电场增量与对应的行星际电场增量的比值为穿透效率,通过数值模拟的方法对穿透效率的地方时变化以及与中性风发电机的关系做了实验性讨论,在一定简化条件下结果表明:(1)不考虑跨极盖电势饱和的情况下,赤道电场增量与行星际电场增量呈线性关系,且中性风发电机并不影响电场穿透效率;(2)恒定重联线长度L的限定下,穿透效率具有明显地方时依赖性.例如对于L=2.6 RE,在9LT至23LT之间,穿透效率维持在10%左右;0LT至7LT之间,穿透效率迅速从2%上升至30%后又迅速回落到原始水平,形成尖峰.这些结果基本符合观测特征.  相似文献   

2.
An investigation involving nonlinear numerical simulation has been undertaken based on the observations of two events involving the reversal of nighttime zonal electric field to eastward direction over equatorial region due to the overshielding effect associated with interplanetary electric field. In one of the events, the ionospheric alterations brought forth by the prompt penetration event lead to the triggering of an equatorial spread F (ESF) event around 2040 IST and a plume structure during pre-midnight hours due to overshielding effect. In another observation, the ESF was found to be absent. The two-dimensional modeling investigation revealed that the storm-induced eastward electric field during nighttime over equatorial region is a necessary but not a sufficient condition for the development of the pre-midnight plume structure in the lower F-region altitude. The large scale size (240 km) perturbation amplitude of 5% is found to be insufficient for the development of late night plume event within 2000 s. A pre-seed in varying degrees in a localized altitude region depending upon the background ionospheric conditions, is found to be required for the development of the pre-midnight plume event. The confined ESF irregularities developed in the post-evening hours in a limited altitude range are suggested to provide such seed perturbation. The importance of the pre-seeded structure for the development of pre-midnight plume event is brought out from this investigation. The roles of the electron density scale length and the peak height of the F layer in deciding the required amplitudes of perturbation are also evaluated. This, in turn, can throw light on the night-to-night variability of storm-time ESF when a typical eastward perturbation electric field is operative during pre-midnight hours. The role of off-equatorial E region conductivity is also discussed.  相似文献   

3.
Using the hourly mean data of the horizontal (H) and vertical (Z) components of the geomagnetic field at the set of nine observatories in India, it has been found that the Disturbance Daily Variation (SD) of H shows a prominent midday depression over the magnetic equator of the H field and a midday increase of Z field at stations near the northern fringe of the equatorial electrojet belt. The magnetic disturbance introduces a westward electric field over the equatorial region, causing a band of westward ionospheric current over the magnetic equator during the day time hours. The latitudinal extent of the disturbance time counter electrojet current seems to be larger than that of quiet time normal electrojet current. This suggests a systematic westward electric field superposed on the normal Sq field at low latitude ionosphere during disturbed periods, the source of which has to be clearly defined. Further correlative data analysis is required to isolate these sources of the disturbed equatorial electric fields.  相似文献   

4.
We present the characteristics of the response of equatorial ionospheric zonal electric field and F-region plasma density to the asymmetric ring current intensifications that occurred in succession on 16 December 1991, corresponding to the STEP/EITS-2 campaign period. The study is based on high-time-resolution (1-min) data of asymmetic ring current indices, ASY(H/D) and F-region vertical plasma drift, Vz measurements at Kodaikanal (10.25°N; 77.5°E; dip 4°), India and quarter-hourly ionosonde data of For-taleza (4°S; 322°E; dip -9°), Brazil. It is shown that short-lived disturbances in F-layer vertical plasma drift, Vz and height (hF/hpF2) indicative of westward and eastward electric fields prevail simultaneously in the dusk (18–21 LT) and predawn (02–05 LT) sectors, respectively, in association with the decay phase of asymmetic ring current events. Electric fields of opposite polarity do also seem to manifest at these local times, particularly in the early-morning sector in conjunction with the intensification of the asymmetric ring current. At a given location, electric field disturbances associated with individual asymmetric ring current events are thus bipolar in nature, with fields of opposite polarity during the growth and decay phases. The nature and polarity structure of the observed electric field disturbances are in agreement with the theoretical/model predictions of prompt penetration of high-latitude electric fields to the equatorial region.On sabbatical leave from Indian Institute of Astrophysics, Bangalore, India  相似文献   

5.
The equatorial ionosphere responses over Brazil to two intense magnetic storms that occurred during 2001 are investigated. The equatorial ionization anomaly (EIA) and variations in the zonal electric field and meridional winds at different storms phases are studied using data collected by digisondes and GPS receivers. The difference between the F layer peak density (foF2) at an equatorial and a low latitude sites was used to quantify the EIA; while the difference between the true heights (hF) at the equatorial and an off-equatorial site was used to calculate the magnetic meridional winds. The vertical drift was calculated as dhF/dt. The results show prompt penetration electric fields causing unusual early morning development of the EIA, and disturbed dynamo electric field producing significant modification in the F region parameters. Variations to different degrees in the vertical drift, the thermospheric meridional winds and the EIA developments were observed depending on the storm phases.  相似文献   

6.
A modeling method is proposed to derive a two-dimensional ionospheric layer conductivity, which is appropriate to obtain a realistic solution of the polar-originating ionospheric current system including equatorial enhancement. The model can be obtained by modifying the conventional, thin shell conductivity model. It is shown that the modification for one of the non-diagonal terms (Σθφ) in the conductivity tensor near the equatorial region is very important; the term influences the profile of the ionospheric electric field around the equator drastically. The proposed model can reproduce well the results representing the observed electric and magnetic field signatures of geomagnetic sudden commencement. The new model is applied to two factors concerning polar-originating ionospheric current systems. First, the latitudinal profile of the DP2 amplitude in the daytime is examined, changing the canceling rate for the dawn-to-dusk electric field by the region 2 field-aligned current. It is shown that the equatorial enhancement would not appear when the ratio of the total amount of the region 2 field-aligned current to that of region 1 exceeds 0.5. Second, the north-south asymmetry of the magnetic fields in the summer solstice condition of the ionospheric conductivity is examined by calculating the global ionospheric current system covering both hemispheres simultaneously. It is shown that the positive relationship between the magnitudes of high latitude magnetic fields and the conductivity is clearly seen if a voltage generator is given as the source, while the relationship is vague or even reversed for a current generator. The new model, based on the International Reference Ionosphere (IRI) model, can be applied to further investigations in the quantitative analysis of the magnetosphere-ionosphere coupling problems.  相似文献   

7.
刘祎  周晨  赵正予  赵庶凡  张学民  孔建 《地震》2018,38(1):74-83
地震会造成电离层电子密度扰动。 基于三维电场渗透模型和SAMI2模型, 模拟地震发生前产生的异常电场对电离层电子密度的影响。 模拟结果表明, 地震前形成的附加电流会引起电离层产生异常电场, 且异常电场值与地震震级和地震发生时间有着明显的相关。 同时异常电场会使电子产生E×B漂移, 造成电子密度扰动。 随着时间的推移, 电子密度扰动逐渐减小且扰动区域会向着靠近磁赤道方向或远离磁赤道方向漂移。  相似文献   

8.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

9.
A meridional scanning OI 630.0-nm dayglow photometer was operated from Ahmedabad (17.2°N dip lat.) scanning a region towards the south in the upper atmosphere extending over \sim5° in latitude from 10.2°N to 15.2°N dip latitude. From the spatial and temporal variabilities of the dayglow intensity in the scanning region we show for the first time, evidence for the passage of the crest of the equatorial ionization anomaly (EIA) in the daytime by means of a ground-based optical technique. The relationship between the daytime eastward electric field over the dip equator in the same longitude zone as inferred from the equatorial electrojet strength and the evolutionary pattern of EIA is clearly demonstrated. The latter as inferred from the dayglow measurements is shown to be consistent with our present understanding of the electrodynamical processes in the equatorial region. The present results reveal the potential of this ground-based optical technique for the investigation of ionospheric/thermospheric phenomena with unprecedented spatial and temporal resolution.  相似文献   

10.
《Journal of Atmospheric and Solar》2002,64(12-14):1531-1543
Jicamarca unattended long term investigations of the ionosphere and atmosphere radar observations of equatorial spread F (ESF) plasma irregularities made between August 1996 and April 2000 are analyzed statistically. Interpretation of the data is simplified by adopting a taxonomy of echo types which distinguishes between bottom-type, bottomside, topside, and post-midnight irregularities. The data reveal patterns in the occurrence of ESF in the Peruvian sector that are functions of season, solar flux, and geomagnetic activity. We confirm earlier work by Fejer et al. (J. Geophys. Res. 104 (1999) 19,859) showing that the quiet-time climatology of the irregularities is strongly influenced by the climatology of the zonal ionospheric electric field. Under magnetically quiet conditions, increasing solar flux implies greater pre-reversal enhancement amplitudes and, consequently, irregularity appearances at earlier times, higher initial altitudes, and higher peak altitudes. Since the post-reversal westward background electric field also grows stronger with increasing solar flux, spread F events also decay earlier in solar maximum than in solar minimum. Variation in ESF occurrence during geomagnetically active periods is consistent with systematic variations in the electric field associated with the disturbance dynamo and prompt penetration described by Fejer and Scherliess (J. Geophys. Res. 102 (1997) 24,047) and Scherliess and Fejer (J. Geophys. Res. 102 (1997) 24,037). Quiet-time variability in the zonal electric field contributes significantly to variability in ESF occurrence. However, no correlation is found between the occurrence of strong ESF and the time history of the zonal electric field prior to sunset.  相似文献   

11.
2015年3月磁暴期间中国中低纬地区电离层变化分析   总被引:9,自引:0,他引:9       下载免费PDF全文
2015年3月17日爆发了本太阳活动周最大的地磁暴,Dst指数达到-233 nT.本文利用电离层测高仪f_。F_2和h_mF_2、北斗同步卫星(BDSGEO)TEC以及GPS电离层闪烁S4指数对此次磁暴期间中国中低纬地区(北京、武汉、邵阳和三亚)的电离层变化进行分析,并对此次磁暴所引发电离层暴的可能机制进行了探讨.磁暴期间,中低纬电离层暴整体表现为正相暴之后长时间强的负相暴.3月17日白天中纬正相暴为风场抬升电离层所致,而驼峰区及低纬地区正相暴由东向穿透电场所引起;3月18日白天长时间的强负相暴为西向扰动发电机电场和成分扰动所引起;3月17和18日夜间的负相暴可能是日落东向电场受到抑制以及赤道向风场对扩散的抑制导致驼峰向赤道压缩所致,同时被抑制的日落东向电场强度不足以触发产生赤道扩展F,导致低纬三亚和邵阳夜间电离层闪烁在磁暴期间受到完全抑制.这是我们首次基于北斗同步卫星TEC组网观测开展的电离层暴研究.  相似文献   

12.
We present the first triangulation measurements of electric fields with the electron drift instrument (EDI) on Equator-S. We show results from five high-data-rate passes of the satellite through the near-midnight equatorial region, at geocentric distances of approximately 5–6 RE, during geomagnetically quiet conditions. In a co-rotating frame of reference, the measured electric fields have magnitudes of a few tenths of mV/m, with the E × B drift generally directed sunward but with large variations. Temporal variations of the electric field on time scales of several seconds to minutes are large compared to the average magnitude. Comparisons of the “DC” baseline of the EDI-measured electric fields with the mapped Weimer ionospheric model and the Rowland and Wygant CRRES measurements yield reasonable agreement.  相似文献   

13.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip 14°N) along with other experiments, as a part of equatorial spread F (ESF) campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160/190 km, 210/257 km and 290/330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km), in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210/257 km) showed a tendency to become slightly flatter (spectral index n = –2.1 ± 0.7) as compared to the valley region (n = –3.6 ± 0.8) and the region below the F peak (n = –2.8 ± 0.5). Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160/330 km region.  相似文献   

14.
15.
2005年3月28日苏门答腊8.6级地震前的电离层扰动   总被引:6,自引:2,他引:4       下载免费PDF全文
2005年3月28日苏门答腊发生8.6级地震,通过分析处在地磁活动平静期的震前15天的数据,发现3月20、22、23和28日在赤道区域多个参量上出现电离层扰动,如电场和等离子体参量,认为这些电离层扰动可能与本次强震有关.震前电子密度异常有两种形态,一种是在原来的峰值变化区电子密度单调增加,幅度超过1σ,如3月20日和28日的异常;另外一种是改变了原来在赤道区的单峰变化形态,而呈现了双峰值和赤道谷值的变化形态,如3月22日和23日的扰动.分析结果显示,这两种形态的电子密度扰动都分布在一个比较大的范围内,经度上跨越100°,纬度范围30°,显示了比较长的异常持续时间和全球变化特性.VLF频段电场频谱的数据分析表明双峰形态的扰动不是磁共轭效应.同时低频电场扰动相对电子密度而言集中在一个相对小范围内,当Ne单调上升时,电场扰动却只出现在离震中最近的轨道上.分析认为震源产生的电场信号直接传播进入电离层是非常困难的,但是它可以通过岩石层-大气层-电离层圈层耦合机制造成电离层扰动.结合离子成分及其变化形态的分析,震前氧离子变化形态与氢、氦离子的形态相反,这与其他地震前的电离层异常扰动形态是类似的.综合分析认为,对于与地震相关的电离层异常的识别需要结合多个观测参量的联合分析.  相似文献   

16.
The plasma sheet moves earthward (equatorward in the ionosphere) after enhancements in convection, and the electrodynamics of this response is strongly influenced by Region 2 magnetosphere–ionosphere coupling. We have used Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) observations associated with two relatively abrupt southward turnings of the IMF to provide an initial evaluation of aspects of this response. The observations show that strong westward sub-auroral polarization streams (SAPS) flow regions moved equatorward as the plasma sheet electron precipitation (the diffuse aurora) penetrated equatorward following the IMF southward turnings. Consistent with our identification of these flows as SAPS, concurrent DMSP particle precipitation measurements show the equatorial boundary of ion precipitation equatorward of the electron precipitation boundary and that westward flows lie within the low-conductivity region between the two boundaries where the plasma sheet ion pressure gradient is expected to drive downward R2 currents. Evidence for these downward currents is seen in the DMSP magnetometer observations. Preliminary examination indicates that the SAPS response seen in the examples presented here may be common. However, detailed analysis will be required for many more events to reliably determine if this is the case. If so, it would imply that SAPS are frequently an important aspect of the inner magnetospheric electric field distribution, and that they are critical for understanding the response of the magnetosphere–ionosphere system to enhancements in convection, including understanding the earthward penetration of the plasma sheet. This earthward penetration is critical to geomagnetic disturbance phenomena such as the substorm growth phase and the formation of the stormtime ring current. Additionally, for one example, a prompt electric field response to the IMF southward turnings is seen within the inner plasma sheet.  相似文献   

17.
This study investigates the temporal evolution of the large plasma depletions observed by ROCSAT-1 and DMSP near 295°E during the 29–30 October 2003 storm. The presence of a penetration electric field around the detection time of the large plasma depletions is supported by the observation of high upward ion drift velocity and formation of an intense equatorial ionization anomaly in the American sector. However, these ionospheric disturbances occur in broad longitude regions; a short-range polarization electric field may adequately explain the creation of the large plasma depletions. The penetration electric field may trigger the Rayleigh–Taylor instability and produce abnormally large plasma depletions during the storm. The TIMED/GUVI and CHAMP observations provide an insight for the evolution of the large depletions several hours after their formation. The large depletions appear as arch-shaped emission depletions in the TIMED/GUVI image and as symmetric depletions paired in the magnetic north and south in the CHAMP observation. These characteristics can be explained by the “plasma depletion shell” phenomenon (Kil et al., 2009) produced by the westward shear flow of the ionosphere during the storm.  相似文献   

18.
The influence of penetration electric fields (PEF) on storm-time energetic particles in the inner magnetosphere and on the stability of plasma in the low-latitude ionosphere is widely recognized. We describe two consequences of PEFs, regularly observed during magnetic storms that indicate their persistence throughout the main phases. These are (1) the presence of equatorial plasma bubbles (EPB) across the evening local time sector during main phases and their absence throughout recovery, and (2) detections of low-energy ion precipitation in the dawn sector equatorward of the auroral electron boundary.  相似文献   

19.
利用计算机模拟研究了非均匀电场产生的赤道扩展F的时空演变。非均匀电场能在赤道电离层F区底部触发Rayleigh-Taylor不稳定性,导致等离子体泡形态。计算中非均匀电场的幅度取为0.25-1.00mV/m,所产生的等离子体泡在2000s以内就能穿过F峰达到540km的高度。所得结果阐明了非均匀电场在赤道扩展F中的作用,指出了产生等离子体泡一种可能的扰动源。由于E区和F区电场是相互影响的,从而揭示了E区和F区扰动的相互联系。  相似文献   

20.
Data from the VLF Doppler experiment at Faraday, Antarctica (65○ S, 64○ W) are used to study the penetration of the high-latitude convection electric field to lower latitudes during severely disturbed conditions. Alterations of the electric field at L-values within the range 2.0 - 2.7 are studied for two cases at equinox (10 - 12 September 1986 and 1 - 3 May 1986). The recovery of the electric field is found to be approximately an exponential function of time. Values for the equatorial meridional E×B drift velocity, inferred from the data, are used as inputs to a model of the plasmasphere and ionosphere. The model and experimental results are used to investigate the post-storm alteration of ionospheric coupling processes. The magnitude of the effect of ionosphere-plasmasphere coupling fluxes on NmF2 values and the O+-H+ transition height is dependent on the local time of storm commencement, and on the orientation of the electric field. The coupling fluxes appear to have a maximum influence on ionospheric content during the main phase of geomagnetic activity that produces outward motion of plasmaspheric whistler ducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号