首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
一种新的全球对流层天顶延迟模型GZTD   总被引:14,自引:3,他引:11       下载免费PDF全文
对流层延迟是GNSS导航定位主要误差源之一,主要受气象参数(如总气压、温度和水汽压等)的影响,具有变化随机性强的特点.本文利用 GGOS Atmosphere提供的2002-2009年全球天顶对流层延迟格网时间序列研究了全球对流层天顶延迟的时空变化特征.并以此为基础对全球天顶对流层延迟(Zenith Troposphere Delay, ZTD)进行建模,提出了一种基于球谐函数的全球非气象参数对流层天顶延迟改正模型--GZTD模型.实验对比结果表明考虑ZTD经纬向变化的GZTD模型内符合精度全球统计结果(bias:0.2 cm,RMS:3.7 cm)优于只考虑ZTD纬向变化的UNB3m (bias:3.4 cm,RMS:6.0 cm)、UNB4 (bias:4.7 cm,RMS:7.4 cm)、UNB3 (bias:4.0 cm,RMS:7.0 cm)和EGNOS (bias:4.5 cm,RMS:6.9 cm)等模型.使用全球385个IGS站进行外符合检验,统计结果表明GZTD模型(bias:-0.02 cm,RMS:4.24 cm)同样优于其它模型.GZTD模型具有改正效果良好、使用简单、所需参数少等优点.  相似文献   

2.
对流层延迟是卫星导航定位的主要误差源,气象观测的数值预报资料可用来计算对流层延迟改正量.本文通过分布于亚洲地区的49个GPS台站一年的实测ZTD资料,对利用欧洲中尺度天气预报中心(ECMWF)分析资料、美国国家环境预报中心(NCEP)再分析资料和NCEP预报资料,计算对流层天顶延迟(ZTD)改正的有效性和可能达到的精度进行了评估,分析了ECMWF和NCEP在亚洲地区的适用程度和其分辨率对计算ZTD精度的影响.研究结果表明:(1)相对于 GPS实测ZTD,用ECMWF资料计算ZTD的bias和rms分别为-1.0 cm 和2.7 cm,优于NCEP再分析资料,可用于高精度ZTD研究和应用;NCEP预报数据计算ZTD的bias和rms分别为2.4 cm 和 6.8 cm,足以满足广大GNSS实时导航定位用户对流层延迟改正的需要.(2)bias和rms呈现明显的季节性变化,总体上夏季大,冬季小;在空间分布上随着纬度的变化不明显,但随高度的增加rms总体上有递减趋势.另外还发现,亚洲东部地区夏季日平均bias和rms和南部热带地区冬季的日平均bias和rms变化相对较大.(3)ECMWF2.5°和0.5°的资料进行了对比分析,发现0.5°分辨率资料的rms比2.5°减小1~5 mm.这些结果,为在亚洲地区的空间大地测量、导航定位和INSAR等工作中,应用ECMWF/NCEP的资料进行对流层大气延迟改正的有效性和可能达到的精度提供了重要参考.  相似文献   

3.
对流层延迟对导航定位精度有着重要的影响,而再分析资料提供的高精度气象参数计算的对流层延迟可应用于定位过程中以提升定位精度.本文针对三种再分析资料计算的对流层延迟进行精度评估,并将其应用在精密单点定位中,分析其对定位精度的影响.首先,利用2020年全球范围内125个IGS(International GNSS Service)站的对流层天顶总延迟(Zenith Total Delay, ZTD)作为真值对三种再分析资料(ERA5、MERRA2、CRA40)计算的ZTD进行了精度评估,并分析其时空分布特性.研究结果表明:ERA5-ZTD的均方根误差(RMS)最小(12.1 mm),其次为CRA40-ZTD(15.8 mm)和MERRA2-ZTD(16.9 mm),整体上ERA5-ZTD的精度最高;据所选的IGS站点的比较结果发现赤道平均偏差(BIAS)呈现负值,在中高纬度地区CRA40的精度优于MERRA2,在低纬度地区则相反,而ERA5在各纬度平均精度均为最优;当考虑季节因素时,三者计算的ZTD-RMS在夏秋季较大,其中ERA5的RMS季节变化最稳定.之后还利用180个探空站点对三者计算...  相似文献   

4.
对流层延迟是影响高精度卫星导航定位的关键因素,也是大气科学研究的重要数据.针对已有全球对流层延迟模型的模型方程未同时顾及高程、纬度和季节变化以及模型构建时仅使用单一格网点数据等问题,本文提出了一种对流层天顶延迟(ZTD)全球模型构建的新方法,即引入滑动窗口算法将全球剖分为大小一致的规则窗口,利用2008—2015年全球大地观测系统(GGOS)大气格网产品构建每个窗口同时顾及高程、纬度和季节因子的全球ZTD新模型(GGZTD模型).联合未参与建模的2016年全球GGOS格网产品和2016年全球316个IGS站精密ZTD产品,检验了GGZTD模型的精度和适用性.结果表明:以GGOS大气格网ZTD产品和IGS站ZTD产品为参考值,GGZTD模型在全球的精度分别为3.58 cm和3.62 cm,相对于UNB3m模型和目前标称精度最优的GPT2w模型计算的ZTD信息,GGZTD模型在全球表现出了最优的精度和稳定性,其精度相对于UNB3m模型具有显著的提升(精度提高了30%以上),相对于GPT2w模型仍具有一定的改善;在ZTD计算时GGZTD模型相对于GPT2w模型显著地减少了模型参数,尤其相对于GPT2w-1(减少了99%).GGZTD模型只需输入位置与时间和依赖相对较少的模型参数则能在全球获得高精度和稳定的ZTD信息,极大地提升了模型的计算效率.  相似文献   

5.
两种精化的对流层延迟改正模型   总被引:7,自引:1,他引:6       下载免费PDF全文
对流层延迟是全球导航卫星系统(Global Navigation Satellite System,GNSS)导航定位中的重要误差源,其量值主要受气象条件影响.采用传统对流层建模思路,利用GPT2模型来提供相对准确的气温、气压和相对湿度,然后利用Saastamoinen模型来计算天顶对流层延迟,由此构建了GPT2+Saas模型;采用新的对流层建模思路,直接针对天顶对流层延迟的时空特性建模,构建了与GPT2+Saas模型相匹配的GZTDS格网模型.以GGOS Atmosphere格网数据为参考,GPT2+Saas模型(Bias:0.2cm;RMS:4.2cm)和GZTDS模型(Bias:0.2cm;RMS:3.7cm)较UNB3m模型精度分别提升34%和43%.以IGS(International GNSS Service)数据为参考,GPT2+Saas(Bias:0.5cm;RMS:4.7cm)和GZTDS(Bias:-0.3cm;RMS:3.8cm)相对UNB3m模型精度分别提升10%和27%.针对GPT2+Saas模型在少数测站出现精度异常的情况进行了研究,探讨了可能的原因.在两种不同思路构建的精化对流层模型中,GZTDS模型不仅表现出更高的精度,而且在时间稳定性和地理稳定性上也表现出优越性.  相似文献   

6.
受制于对流层延迟建模方法和建模背景场精度及时空分辨率的影响,目前实时对流层延迟模型的精度和稳定性都有待进一步改善.本文利用甘肃及周围地基共计184个GNSS (Global Navigation Satellite System)站估算的ZTD (Zenith Troposphere Delay),构建了空间分辨率为0.25°×0.25°的甘肃地区实时ZTD网格模型.针对传统的高程归化模型及水平内插模型精度低的问题,本文提出了利用高斯指数函数模型将不同高程的GNSS/ZTD归化到统一的高度,再基于BP神经网络模型从网格顶点周围统一高度后的GNSS/ZTD中内插出网格顶点处的ZTD.为了验证甘肃ZTD网格模型的精度,选取2022年甘肃地区8个未参与建模的陆态网GNSS测站的数据进行了实验.统计结果显示:与事后PPP (Precise Point Positioning)处理GNSS估算的ZTD相比,甘肃ZTD网格模型与真值偏差的RMS优于1.52 cm.此外,将构建的实时ZTD格网模型用于约束PPP处理,对于PPP浮点解施加ZTD约束后U方向精度提升22.9%,U方向收敛时间缩短26.4...  相似文献   

7.
利用神经网络算法挖掘海量数据的规律已成为科技发展的一种趋势,本文针对卫星信号的天顶对流层延迟进行建模.对流层延迟是影响卫星定位精度的重要因素之一,建立精密区域对流层模型对高精度定位有着重要的意义.对区域测站对流层延迟数据的分析,考虑到实时建模中传统BP(Back Propagation)神经网络计算量大,易出现"过拟合"现象、不稳定等因素,通过改进的BP神经网络建立了区域精密对流层模型.详细介绍了新模型的建立过程,并与常用的对流层区域实时模型进行了对比.还讨论了建模测站数目对预报精度的影响.相比现有的其他对流层延迟模型,基于改进的BP神经网络构建的区域精密对流层延迟模型无论在拟合和预报方面都有较好的精度,且随着测站数目的增加模型精度趋于平稳.改进的模型参数较少,可以进行实时的区域精密对流层延迟改正;需要播发的信息量小,适用于连续运行参考站系统(Continuously Operating Reference Stations,CORS)的应用.研究表明:改进的BP神经网络模型能够更好的充分利用大规模历史数据描述卫星信号对流层延迟的空间分布情况,适用于实时大区域精密对流层建模.基于日本地区2005年近1000多个测站的NCAR(National Center Atmospheric Research)对流层数据进行区域对流层延迟建模,结果表明改进的BP神经网络模型在拟合和预报精度上都有较大提升,RMSE(Root Mean Square Error)分别为:7.83 mm和8.52 mm,而四参数模型拟合、预报RMSE分别18.03 mm和16.60 mm.  相似文献   

8.
对流层延迟是空间大地测量技术的主要误差源之一,数据处理中对流层延迟的修正需要借助对流层延迟模型.本文首先从物理原理出发,梳理了对流层天顶延迟模型的研究历程和最新进展.按照时间顺序,对流层延迟模型先后经历了依赖实测气象资料的经典模型、不依赖实测参数的经验模型和以数值模型气象资料为基础的高分辨经验模型三个发展阶段.其次,本文利用中国区域内219个GPS测站2014—2015年两年实测的天顶延迟,对后两类经验模型中国际最新通用的代表模型UNB3m和GPT2w在中国境内的实际精度进行评估.精度评估结果显示:UNB3m模型在中国地区的平均Bias为-0.85 cm,平均RMSE为5.14 cm,其精度不随计算时间分辨率的变化而显著变化;模型参数的空间分辨率对GPT2w模型在中国地区的精度的影响不大,但GPT2w模型精度随计算时间分辨率的提高显著下降,2 h分辨率时GPT2w模型的平均RMSE分别为8.07 cm(1°参数文件)和7.97 cm(5°参数文件),1天分辨率时GPT2w模型的平均RMSE分别为3.49 cm(1°参数文件)和3.59 cm(5°参数文件);受水汽分布的影响,时间上,两个模型在冬季的精度相对最高,在夏季的精度相对最差,空间上,两个模型在高纬度和高海拔地区的精度相对较高.以上分析可为中国区域用户对流层延迟模型的选择提供参考.  相似文献   

9.
气压、温度和水汽含量等大气物理参数的时空变化导致的对流层延迟是制约合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)高精度应用的重要因素之一.最新研究显示气象再分析资料在补偿对流层延迟影响方面具有巨大的应用潜力,这促使我们对其有效性和鲁棒性做进一步的研究和探索.本文首先推导了利用气象再分析资料对InSAR进行对流层延迟校正的算法;然后以美国南加州地区的ENVISAT ASAR数据为例,分析了基于两种气象再分析资料(ERA-Interim和North American Regional Reanalysis,NARR)校正InSAR对流层延迟改正的效果;通过与MERIS水汽延迟改正结果比较,验证了该方法的有效性.实验结果表明:(1)不能简单忽略干延迟,可通过气象再分析资料进行有效估计;(2)通过与MERIS水汽产品获得的对流层延迟比较发现,气象再分析资料能够取得接近于MERIS的改善效果;(3)对ERA-Interim和NARR两种气象再分析资料而言,虽然后者具有更高的时间和空间分辨率,但在改正InSAR对流层延迟方面并没有表现出比前者更明显的优势;(4)气象再分析资料可以很好地估计与地形强相关的垂直分层延迟,但对于小尺度的湍流混合延迟的捕捉能力有限.综合分析认为,气象再分析资料的优势在于其数据可随时获得、免费和全球覆盖,它可以显著减弱大尺度的垂直分层延迟对干涉图相位的影响,从而有助于InSAR获取更真实可靠的地形高程和地表形变信息.  相似文献   

10.
基于实时精密单点定位技术的暴雨短临预报   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了一种将实时精密单点定位(Precise Point Positioning, PPP)技术用于暴雨短临预报的新方法.该方法首先基于GPS连续运行参考站网(Continuously Operating Reference Stations, CORS)实时估计的精密卫星钟差完成PPP解算,再以实时获取的对流层延迟(Zenith Tropospheric Delay, ZTD)及其增量变化为依据进行暴雨短临预报.研究结果表明:一般雷暴天气来临之前的2~6 h,ZTD增量表现为先后突破±5 mm/5 min,且后续记录到的实际降水量大小与ZTD维持在高水平阶段的时间长短有较好的对应关系;就热带气旋而言,在强风作用下,ZTD增量变化表现的异常活跃和复杂,规律性较弱,但对短临预报强降雨仍有一定的指示作用.  相似文献   

11.
Tropospheric delay acts as a systematic error source in the Global Navigation Satellite Systems (GNSS) positioning. Empirical models UNB3, UNB3m, UNB4 and EGNOS have been developed for use in Satellite-Based Augmentation Systems (SBAS). Model performance, however, is limited due to the low spatial resolution of the look-up tables for meteorological parameters. A new design has been established in this study for improving performance of the tropospheric delay model by more effectively eliminating the error produced by tropospheric delay. The spatiotemporal characteristics of the Zenith Tropospheric Delay (ZTD) were analyzed with findings that ZTD exhibits different annual variations at different locations and decreases exponentially with height increasing. Spherical harmonics are utilized based on the findings to fit the annual mean and amplitude of the ZTD on a global scale and the exponential function is utilized for height corrections, yielding the ZTrop model. On a global scale, the ZTrop features an average deviation of -1.0 cm and Root Mean Square (RMS) of 4.7 cm compared with the International GNSS Service (IGS) ZTD products, an average deviation of 0.0 cm and RMS of 4.5 cm compared with the Global Geodetic Observing System (GGOS) ZTD data, and an average deviation of -1.3 cm and RMS of 5.2 cm compared with the ZTD data from the Constellation Observing System of Meteorology, Ionosphere, and Climate (COSMIC). The RMS of the ZTrop model is 14.5% smaller than that of UNB3, 6.0% smaller than that of UNB3m, 16% smaller than that of UNB4, 14.5% smaller than that of EGNOS and equivalent to the sophisticated GPT2+Saas model in comparison with the IGS ZTD products. The ZTrop, UNB3m and GPT2+Saas models are finally evaluated in GPS-based Precise Point Positioning (PPP), as the models act to aid in obtaining PPP position error less than 1.5 cm in north and east components and relative large error (>5 cm) in up component with respect to the random walk approach.  相似文献   

12.
The Mw=8.0 Wenchuan Earthquake occurred on May 12, 2008 at the Longmen Shan fault, the western Sichuan Basin, China, killing more than ten thousand people in several cities and causing large economic losses. Global Positioning System (GPS) observations have provided unique insights on this event, including co-seismic ionospheric disturbances, co-/post-seismic crustal deformations and fault slip distributions. However, the processes and the driving mechanisms are still not clear, particularly possible seismo-lower atmospheric–ionospheric coupling behaviors. In this paper, the lower atmospheric (tropospheric) variations are investigated using the total zenith tropospheric delay (ZTD) from GPS measurements around this event. It has the first found co-seismic tropospheric anomalies during the mainshock with an increase and then a decrease, mainly in the zenith hydrostatic delay component (ZHD), while it is also supported by the same pattern of surface-observed atmospheric pressure changes at co-located GPS site that are driven by the ground-coupled air waves from ground vertical motion of seismic waves propagation. Therefore, the co-seismic tropospheric disturbances (CTD) indicate again the acoustic coupling effect of the atmosphere and the solid-Earth with air wave propagation from the ground to the top atmosphere.  相似文献   

13.
Ground-based GPS finds potential applications in many atmospheric studies such as spatial distribution of columnar water vapor as well as the tidal oscillations in the atmosphere. The zenith tropospheric delay (ZTD) derived from GPS data at two Indian IGS stations are used to establish its potential for studying the atmospheric tidal, intra-seasonal and planetary oscillations. The major tidal oscillations observed in ZTD data are diurnal, semi-diurnal and their harmonics. Prominent intra-seasonal oscillations observed in ZTD are reported for the first time in this context. These intra-seasonal oscillations are Madden–Julian Oscillation (30–70 days, 60–90 days, 100–120 days) and planetary waves (like 27, 16 and 5–10 days periodicities). Quantification of these periodicities will provide a useful handle to improve the empirical models employed in the estimation of tropospheric delay.  相似文献   

14.
In this article we analyze the variations of the Zenith Tropospheric Delay (ZTD) and its components, Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) recorded by the GPS reference stations in the area of the Canary Islands during the passing of the tropical storm Delta on November 28 and 29, 2005. During this event, we observed that all GPS stations experienced significant increases of the ZWD value of over 100 mm and a decrease in the ZHD values of about 30 mm. The increase of the normal ZWD values was detected several hours prior to the manifestation of the weather phenomena on the ground. We also noticed a connection between the maximum ZWD values observed and the temporal distribution of the rain. The observed variations of the tropospheric slant directional gradients correlate significantly with the variations in direction and intensity of the observed winds. The relation noted between the ZWD values and the tropospheric slant delay gradients with meteorological observables highlights the convenience of using existing or new GPS networks when studying weather phenomena such as severe cyclones.  相似文献   

15.
The aim of this study is to assess the availability and quality of data from the International GNSS Service (IGS) Global Positioning System (GPS) network in Africa, especially for retrieving zenith tropospheric delay (ZTD), from which precipitable water vapour (PWV) can be derived, in view of application to the African Monsoon Multidisciplinary Analysis (AMMA) project. Three major error sources for the GPS data analysis evaluating PWV in Africa are the accuracy of the satellite orbits, the correction for the radio delay induced by the ionosphere and the vertical site displacements due to ocean loading. The first part of this study examines these error sources and the validity of GPS data for meteorological applications in Africa in dedicated analyses spanning the year 2001. These analyses were performed using the IGS precise orbits. Weak degradation of baseline precision with increasing baseline lengths suggests that the average orbital error is not limiting the GPS analysis in Africa. The impact of the ionosphere has been evaluated during a maximum of solar activity in 2001. The loss of L2 data has actually been observed. It amounts to 2% on average for 2001, with maxima of 8% during magnetic storm events. A slight decrease in formal accuracy of ZTD seems to be related to the loss of L2 data at the end of the day. This indicates that scintillation effects are present in the GPS observations but however are not a major limitation. The impact of ocean loading is found to be significant on ZTD estimates (up to ±2 mm in equivalent PWV). The use of a proper ocean loading model eliminates this effect.The second aspect of this study concerns the IGS analysis quality for the African stations. The accuracy has been assessed through position dispersion between individual solutions and the most recent version of the IGS combined solution IGb00, and residuals from the transformation of the IGS combined solution into the International Terrestrial Reference Frame 2005. The positioning performance of the IGS analysis is consistent with an accuracy in ZTD of ±6 mm (±1 mm in PWV), as requested for meteorological applications such as planned in AMMA.  相似文献   

16.
In many surveying applications, determination of accurate heights is of significant interest. The delay caused by the neutral atmosphere is one of the main factors limiting the accuracy of GPS positioning and affecting mainly the height coordinate component rather than horizontal ones. Estimation of the zenith total delay is a commonly used technique for accounting for the tropospheric delay in static positioning. However, in the rapid static positioning mode the estimation of the zenith total delay may fail, since for its reliable estimation longer observing sessions are required. In this paper, several troposphere modeling techniques were applied and tested with three processing scenarios: a single baseline solution with various height differences and a multi-baseline solution. In specific, we introduced external zenith total delays obtained from Modified Hopfield troposphere model with standard atmosphere parameters, UNB3m model, COAMPS numerical weather prediction model and zenith total delays interpolated from a reference network solution. The best results were obtained when tropospheric delays derived from the reference network were applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号