首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 77 毫秒
1.
许俊闪  包林海 《地球物理学报》2017,60(12):4580-4588
本文利用数值模拟方法研究了橄榄石-单斜辉石、瓦兹利石-单斜辉石、林伍德石-石榴石三种两相矿物模型在俯冲带温度应力条件下的蠕变,分析了剪切应力在俯冲带两相矿物模型中的发展,结果显示矿物蠕变差异在俯冲带剪切应力发展过程中起到了重要作用.尤其是林伍德石的快速蠕变率及其与石榴石的蠕变差极大地加速了俯冲带剪切应力的发展过程,可能是600km深度附近地震数量急剧增多的重要原因.我们的结果可以从一个新的角度理解俯冲带深源地震机制.  相似文献   

2.
利用有限元方法,计算了不同俯冲速度及热传导系数俯冲岩石层的负浮力.在h-lt;400km和h-gt;740km的深度范围,低温高密俯冲带的负浮力随深度单调增加.因为尖晶石相到后尖晶石相的相变有负的克兰帕龙斜率,俯冲带冷的物质在660km间断面以下不到100km的深度范围内仍以低密度的低压物质相存在.所以在该深度范围,俯冲带受到了周围地幔阻止其插入下地幔的浮力作用.在400km-lt;h-lt;660km深度范围,由于受橄榄石相变的影响,不同计算模型负浮力随深度的变化有明显的不同.对于可能的相变动力学模型,亚稳态橄榄石的存在使负浮力随深度的增加值减小.其作用是不利于俯冲带直接穿透660km间断面,并引起该深度范围俯冲带沿俯冲方向压应力分布的变化.  相似文献   

3.
俯冲带流变性质的研究   总被引:4,自引:0,他引:4  
对不同俯冲速度下俯冲带的热结构和相结构进行了耦合计算, 并结合矿物流变的理论和实验结果给出了不同俯冲速度下俯冲带的流变结构. 浅部俯冲带上表层有1034 Pa·s以上的高粘度值, 而俯冲带下表层的粘度则较小, 但也大于1026 Pa·s; 在橄榄石-尖晶石动力学相变界面以下的深度, 俯冲带的粘度有明显的减小, 最低可达约1022 Pa·s; 在700 km附近尖晶石相-钙钛矿相变界面以上的小区域内有一个粘度明显高于周围区域的高粘度区, 其存在是因为尖晶石相-钙钛矿的相变是一个吸热过程; 尖晶石相占1%到99%的等值线之间的距离有从浅部的约1 km到最底部的约5 km的变化, 初步估计这是高粘度的俯冲带深部的一个低粘度区, 其存在将影响俯冲带的动力学性质.  相似文献   

4.
橄榄石和辉石以及它们的高压相是地幔转换带主要矿物,系统研究橄榄石和辉石在转换带底部温度和压力条件下相变的差异是认识660km地震不连续面位置和形态的关键.本文使用多面砧压机开展了橄榄石和顽火辉石在压力为21.3~24.4GPa,温度为1600℃的相变实验研究.地幔转换带底部,橄榄石和顽火辉石相变主要的差异在于钙钛矿出现的压力不同.在橄榄石体系中,后尖晶石相分解发生在23.8GPa,与660km不连续面具有很好的对应关系;而在顽火辉石体系中,钙钛矿出现的压力小于23GPa.研究结果表明,橄榄石后尖晶石相变与辉石中钙钛矿的出现之间有约0.5—1GPa压力差.因此,在受大洋俯冲带影响地区(例如中国东部),辉石体系中发生的秋本石(钛铁矿).钙钛矿的相变能够合理解释660km地震不连续面向上的起伏或分裂.  相似文献   

5.
本文综述了近年来地幔及俯冲带热结构方面的研究成果。热边界层以外的地幔温度近似于绝热压缩的温度分布。相变对上地幔温度有贡献,670km间断面的性质决定了两种不同的温度模式。采用准动力学方案近似解俯冲带热结构,参数的选择及生热率的不同估计会强烈影响俯冲带的热结构。本文对此作了比较,并指出了存在的问题。  相似文献   

6.
日本海俯冲带的热结构及热源的影响   总被引:8,自引:3,他引:8       下载免费PDF全文
在对温度场计算所需的初始条件、边界条件、热源条件和介质热参数进行讨论和计算的基础上,利用二维热传导问题的有限单元法,计算了日本海俯冲带热结构的演化.发现400℃等温线在板块俯冲7Ma后趋于稳定,最大深度约60km;800℃等温线在板块俯冲11Ma后趋于稳定,最大深度约280km;1200℃等温线在板块俯冲50Ma后趋于稳定,最大深度约530km.通过计算不同热源组合情况下日本海俯冲带的热结构,讨论了热源的因素对俯冲带热结构的影响.结果表明,剪切生热和脱水热只对俯冲带浅部热结构有很大影响,绝热压缩生热对热结构的影响范围最大,而橄榄石→尖晶石相变生热是400km深度以下热结构的控制性热源因素.  相似文献   

7.
板块俯冲时海沟位置存在不变、前进和后撤 3种情况 ,后撤俯冲可能造成弧后扩张 .层析成像等资料显示 :太平洋板块低角度俯冲到欧亚板块之下后没有穿透 670km相变界面 ,而是平卧于该界面之上 .这种平卧过程可能始于 2 8Ma前 .地球动力学计算表明 :俯冲板片前缘触及上下地幔相变界面而受阻平卧时 ,有利于形成后撤俯冲和弧后扩张 .中国东北火山形成很可能属于这种后撤俯冲、远离海沟陆内弧后引张、地幔热物质上涌、减压熔融的情况 .  相似文献   

8.
从Global CMT目录搜集了1976年1月至2016年6月之间的震源深度大于70km的255个震源机制解,用阻尼应力反演方法,分70~160km和170~310km两个深度,计算了帕米尔—兴都库什地区的构造应力场;同时以10km为间隔计算了兴都库什地区深度介于70~310km之间的应力形因子.得到以下初步结论:兴都库什板片向下俯冲和帕米尔地区断裂带的横向拉张,可能是导致应力场不同的原因.兴都库什俯冲带与帕米尔俯冲带碰撞,导致交汇地区(37°N—37.5°N)的应力场参数突变.兴都库什俯冲板片受到深部温度、压力等因素,出现薄弱面进而形成拆离板片.其脱离了主俯冲板片的束缚后,重力的上下拉张作用导致空区附近张轴倾伏角接近90°,拆离板片俯冲至上地幔不连续面,导致板片部分熔融进而应力形因子随着深度变小.而拆离板片受到地幔挤压其内部发生破碎,其压应力轴由西部的NS到东部NW-SE方向偏转及纵向张应力轴倾伏角变小.  相似文献   

9.
通过地震分布及地震机制解所反映的日本海-鄂霍次克海俯冲带的形态及应力状态,研究了俯冲带深部形变及650km间断面的穿透问题.日本海Benioff带较直,连续性较好;鄂霍次克海Benioff带弯度稍大,220-320km深度之间地震很少.两俯冲带在浅部及深部地震密集,100-200km深度之间有双地震层.应力状态随深度变化,200km深度以下P,T轴方向相对集中,P轴接近俯冲方向,在约100-200km深度附近,P,T轴均接近俯冲方向.观测和理论地震图拟合分析表明,地震断层面走向接近俯冲带走向,断裂的结果使俯冲带在深部倾角变小.  相似文献   

10.
板块俯冲时海沟位置存在不变、前进和后撤3种情况, 后撤俯冲可能造成弧后扩张. 层析成像等资料显示:太平洋板块低角度俯冲到欧亚板块之下后没有穿透670 km相变界面, 而是平卧于该界面之上.这种平卧过程可能始于28 Ma前. 地球动力学计算表明:俯冲板片前缘触及上下地幔相变界面而受阻平卧时, 有利于形成后撤俯冲和弧后扩张. 中国东北火山形成很可能属于这种后撤俯冲、远离海沟陆内弧后引张、地幔热物质上涌、减压熔融的情况.   相似文献   

11.
In the PREM seismic model, the boundary between the upper and the lower mantle is accepted at a depth of 670 km, where seismic velocities and density increase. However, until recently there was an obvious inconsistency in this model. The density increases abruptly, and the velocities, in addition to the jumps, have also the subsequent zones of increased gradient. The discontinuity between the upper and the lower mantle is related to the transition of olivine from the ringwoodite phase into the mixture of perovskite and magnesiowustite. However, in the pyrolyte model, the transition zone of the upper mantle consists not wholly of olivine, but partly of olivine (60%) and partly of garnet (40%). The latest data of the garnet measurement at high pressures show that it also experiences phase transition, being converted into magnesium perovskite with the impurity of calcium perovskite. In contrast to the sharp transition in olivine (within a depth interval of only 5 km), the transition in garnet is spread over the interval of depths of 660–710 km. In the widely used PREM and AK135 models, this additional transition corresponds to the zone of the increased gradient in seismic velocities, while in the density distribution it is included in the sharp transition of ringwoodite. Thus, the mineralogy data indicate the need for correction of the PREM and AK135 seismic models: the density jump at a depth of 660 km should be reduced by approximately a factor of two, and a subjacent layer with the increased density gradient should be added at the depth interval of 660–710 km. The phase transition in olivine hampers the mantle flows, although in garnet it accelerates them. Therefore, with an allowance for the smaller jump in density, the decelerating effect of the subducting plates, caused by the phase transition in olivine, decreases, and, furthermore, the effect of their acceleration, caused by the phase transition in garnet, is added. The decrease in the density jump by almost a factor of two will lead to essential changes in the results of the majority of recent works addressing the assessment of the deceleration of convection at the upper/lower mantle discontinuity on the basis of the PREM model.  相似文献   

12.
脆塑性转化带对于研究岩石圈变形、断层强度和变形机制以及强震的孕育和发生具有重要意义。文中采用汶川地震震源区彭灌杂岩中具有代表性的细粒花岗岩样品,在固体压力介质三轴实验系统上开展了高温高压非稳态流变实验研究。实验设计模拟了汶川地震区地壳10~30km深度的实际温度和压力,温度为190~490℃,压力为250~750MPa,应变速率为5×10-4s-1,利用扫描电镜对实验样品进行微观结构观察。实验力学数据、微观结构及变形机制分析表明,在相当于地壳浅部10~15km深处的低温低压条件下,表现为应变强化,样品具有脆性破裂-半脆性流动的变形特征;在相当于地壳15~20km的深度条件下,随着应变量增加,应力趋于稳态,样品具有脆塑性转化特征;在相当于地壳20~30km的深度条件下,样品具有塑性流动特征。当样品处于半脆性域时发生非稳态流变,主要变形机制为碎裂作用,同时激活了动态重结晶作用、位错蠕变等塑性变形机制。样品强度随着深度不断增大,在深度为15~20km时达到极大值,深度为20~30km时强度逐渐减小。因此,花岗岩的强度随深度的变化规律与微观结构及变形机制均表明,在实验温度和压力条件下,花岗岩具有非稳态流变特征,在15~20km深处,龙门山断裂带处于脆塑性转化带,花岗岩强度达到最大值,该深度与汶川地震的成核深度一致,显示出彭灌杂岩的强度和变形对汶川地震的孕育和发生具有控制作用。  相似文献   

13.
利用华北固定台网的宽频带地震远震记录波形资料,提取P波接收函数,通过偏移成像和共转换点叠加,得到华北地区东部地幔过渡带深度及厚度的图像.研究结果显示,地幔过渡带上界面(410km间断面)深度起伏变化不大;在华北地区东部,存在较厚的地幔过渡带,地幔过渡带下界面(660km间断面)在660km深度附近出现两个不同的界面.造成地幔过渡带增厚并出现两个深度不同的界面的原因可能是存在橄榄岩以外的地幔物质相变,该物质相变拥有与橄榄岩向钙钛矿转变不同的克拉伯龙斜率,太平洋俯冲板块的低温造成两种不同的相变界面发生不同程度的改变.双重660km间断面的范围存在向北西方向延伸的趋势并且向南至少延伸到30°N.本文的结果可为古西太平洋板块向华北俯冲前缘位置的研究提供约束.  相似文献   

14.
We have addressed the problem of subduction initiation with a solid-mechanical and fluid-dynamical approach, using a finite-element method. The setup has been extended by a rate-sensitive coupling at the bottom of a semi-brittle lithosphere and a fully coupled thermo-mechanical model. The central element of our model is a broad asymmetric sedimentary loading function at the passive continental margin, which grows with time to 15 km. Two fundamentally different modes of shear zone formation have been found depending on the rheology of the creep layer. Mode 1: For cases of low or absent yield stress in the creep layer only, the semi-brittle top develops a weak zone, while the rate-sensitive layer acts as a decoupling shear zone. Mode 2: For cases with a yield strength in the creep layer (strain rates above 10−15 s−1 after yielding), the entire mechanical lithosphere fails on a major shear zone; mode 1 fails to model subduction initiation, while mode 2 creates a weak, major shear zone that severs through the entire lithosphere.  相似文献   

15.
本研究基于Global CMT提供的1196个1976年11月—2017年1月MW4.6地震矩心矩张量解,对西北太平洋俯冲带日本本州至中国东北段的应力场进行反演计算,得到了从浅表到深部俯冲带应力状态的完整分布.结果显示:俯冲带浅表陆壳一侧应力场呈现水平挤压、垂向拉伸状态,洋壳一侧的应力状态则相反,即近水平拉张、近垂向压缩.沿着俯冲板片向下,应力主轴逐渐向俯冲板片轮廓靠拢,其中位于双地震层(120km深度附近)之上的部分,主张应力轴沿俯冲板片轮廓展布而又比其更为陡倾;双地震层内的应力模式同典型I型双层地震带内的应力模式一致,即上层沿俯冲板片轮廓压缩、下层沿俯冲板片轮廓拉伸;双地震层之下,应力模式逐步转变为主压应力轴平行于俯冲板片轮廓.通观所研究的整个俯冲系统,水平面内主压和主张应力轴基本保持了与西北太平洋板片俯冲方向上的一致性,同经典俯冲板片的应力导管模型所预言的俯冲带应力模式相符;而主张应力轴在俯冲板片表面之下的中源地震深度范围内转向海沟走向,或许同研究区域横跨日本海沟与千岛海沟结合带,改变的浅部海沟形态致使完整俯冲板片下部产生横向变形有关.  相似文献   

16.
We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2–3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2–1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181–1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14–18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.  相似文献   

17.
日本海及中国东北地震的深度分布及其应力状态   总被引:25,自引:1,他引:24       下载免费PDF全文
本文分析了日本海及中国东北的地震深度分布。证实了日本本州北部至中国东北的贝尼奥夫带(Benioff)基本是连续的,该带的倾向约为北85°西,倾角约为29°,深度在150公里以下贝尼奥夫带厚度约为20公里。研究了日本本州北部至中国东北的震级M_b≥5.0地震的震源机制解,发现中国东北地壳应力场与日本海地壳的应力场方向一致,来源于太平洋板块的挤压。在俯冲带上,深度在100公里到200公里之间的情况较为复杂,大多数地震显示的主压应力方向与贝尼奥夫带的倾向、倾角一致,有的T轴取向与贝尼奥夫带的倾向、倾角一致,有的特征方向与贝尼奥夫带倾向、倾角均不一致。深度在200公里至500公里之间,主压应力方向近于水平,并与贝尼奥夫带走向垂直,张应力轴相对集中。深度大于500公里时,主压应力方向与贝尼奥夫带的倾向、倾角一致,张应力轴相对集中  相似文献   

18.
汤加—克马德克俯冲带是太平洋板块向澳大利亚板块俯冲碰撞的动力作用区,是全球俯冲带动力学研究的热点区域.本研究基于EHB地震目录,对汤加—克马德克俯冲带(18.5°S—28.5°S)区域进行平面拟合,得到该范围内俯冲带走向约为196°,倾角约为48°;利用该俯冲带研究区域内Global CMT目录,对不同位置、不同深度进行区域应力张量反演,得到汤加—克马德克俯冲带研究区内精细的应力图像.结果显示:(1)俯冲带浅部(60~300km)应力结构非均匀特征明显,主应力轴倾伏角变化多样,并且最大主压应力轴方位在24°S左右发生明显偏转,我们推测这可能与洋底构造路易斯维尔海链俯冲有关;(2)中部(300~500km)最大主压、主张应力轴由北向南逐渐发生偏转,这可能与由北向南流动的地幔流对俯冲板片产生推挤作用有关,并且这种推挤作用向南逐渐减弱;(3)深部(500~700km)最大主压应力轴沿俯冲方向分布;(4)本文的结果还发现了主俯冲带深部西侧"偏移"板片与主俯冲带应力结构不同,表明"偏移"板片与主俯冲带是分离的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号