首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的s波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10—15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘.甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的,松潘-甘孜块体是低s波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

2.
青藏高原东缘龙门山逆冲构造深部电性结构特征   总被引:16,自引:12,他引:4       下载免费PDF全文
通过对汶川地震前观测的碌曲—若尔盖—北川—中江大地电磁剖面的数据处理和反演解释,揭示了沿剖面的松潘—甘孜地块、川西前陆盆地、龙门山构造带及秦岭构造带50 km深度的电性结构特征及相互关系,表明青藏高原东缘向东挤压,迫使向东流动的地壳物质沿高原东缘堆积,并向扬子陆块逆冲推覆.龙门山恰好位于松潘—甘孜地块与扬子陆块对挤部位,主要受松潘—甘孜地块壳内高导层滑脱和四川盆地基底高阻体阻挡的约束,地壳深部存在着西倾且连续展布的壳内低阻层,表明龙门山深部确实存在着逆冲推覆构造,其逆冲断裂系中的三条断裂不仅以不同的倾角向西北倾斜,并且向深部逐渐汇集,但茂县—汶川断裂可能在深部与北川—映秀断裂是分离的.龙门山两翼的四川盆地和松潘甘孜褶皱带的电性结构既具有明显差异性,又具有一定的相关性.四川盆地显示巨厚的低阻沉积盖层和连续稳定的高阻基底的二元电性结构,而松潘—甘孜地块则表现为反向二元结构,即上部大套高阻褶皱带,下部整体为低阻的变化带,龙门山逆冲构造带本身又表现为松潘地块逆冲上覆在四川盆地之上,构成上部高阻褶皱带、中部低阻逆冲断裂带和底部盆地高阻基底的三层电性结构.对比龙门山逆冲构造断裂带的西倾延伸上下盘两侧的两个反对称的二元电性结构,松潘区块深部推断的结晶基底与龙门山断裂带下盘推断的下伏盆地结晶基底又存在某种内在对应关系,推断可能存在一个西延至若尔盖地块的泛扬子陆块.因此,龙门山构造带地壳电性结构研究对于揭示青藏高原东缘陆内造山动力过程,探索汶川大地震的深部生成机理都具有重要意义.  相似文献   

3.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的S波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10~15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘-甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的.松潘-甘孜块体是低S波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

4.
参考青藏高原东缘松潘-甘孜地块至四川盆地陡变地形起伏和地壳密度结构的横向差异,本文建立了二维牛顿黏性流体有限元模型,计算分析构造加载、陡变地形和重力效应控制下青藏高原东缘岩石圈变形特征,探讨横向不均匀的地壳密度结构、陡变地形和岩石圈流变性质对区域现今垂向运动的影响.计算结果显示:在构造加载作用下,松潘-甘孜地块至四川盆地地表抬升微弱.区域横向不均匀的地壳密度结构驱使松潘-甘孜地块地壳整体抬升,速率高达2 mm·a-1,四川盆地整体下沉,速率约1 mm·a-1,与龙门山两侧现今观测到的地表垂向变形模式相近.龙门山地区陡变地形驱使柔性地壳流动,调整区域地壳局部变形;岩石圈流变结构影响重力驱动作用下的模型变形量值和岩石圈变形耦合程度,松潘-甘孜地块较低的中地壳黏滞系数引起上、下地壳的变形解耦;模型较高的岩石圈地幔黏滞系数使重力驱动作用下区域垂向变形量降低.因此,青藏高原东缘地壳密度结构差异、地形起伏和岩石圈流变性质是现今区域垂向变形的重要动力学控制因素.  相似文献   

5.
青藏高原东缘龙门山构造带是研究青藏高原地壳物质向东侧向挤出的焦点地区.为探索龙门山构造带活动构造特征及其与发震构造的关系,本文通过布置垂直龙门山构造带南段芦山地震震源区的大地电磁测深剖面,运用多种数据处理手段,得到研究区可靠的电性结构,并通过与已有龙门山中段和北段剖面进行对比分析.研究表明:(1)青藏高原东缘岩石圈存在明显的低阻异常带--松潘岩石圈低阻带,该低阻异常带沿龙日坝断裂-岷山断裂-龙门山后山断裂分布,形成松潘-甘孜地块向扬子地块俯冲的深部动力学模式,通过统计研究区的历史强震,发现震源主要沿低阻异常带东侧分布,同时,低阻异常带也是低速度、低密度异常带,松潘岩石圈低阻带可能是扬子地块的西缘边界;(2)青藏高原物质东移过程中,受到克拉通型四川盆地的强烈阻挡,龙门山构造带表层岩块和物质发生仰冲推覆,表现为逆冲推覆特征的薄皮构造,中下地壳和上地幔顶部物质向龙门山构造带岩石圈深部俯冲,印支运动晚期,扬子古板块持续向华北板块俯冲,在上述构造运动作用下,呈现出刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔状构造;(3)根据电性结构推断,芦山地震受到深部上里隐伏壳幔韧性剪切带向上扩展的影响,构成芦山地震的深部主要动力来源;汶川地震的发生,在龙门山南段形成应力加载区,是触发或加快芦山地震孕育发生的另一个动力来源.  相似文献   

6.
龙门山断裂带位于青藏高原东缘,在中生代和晚新生代经历强烈的构造变形,急剧抬升,是研究青藏高原隆升和扩展动力学过程的重要窗口.本文利用起伏地形下的高精度成像方法,对"阿坝一龙门山一遂宁"宽角反射/折射地震数据重新处理,通过走时反演重建研究区地壳速度结构.剖面自西向东跨越松潘一甘孜块体、龙门山断裂带和四川盆地,不同块体速度结构表现了显著的差异.松潘甘孜块体地表复理石沉积层内有高速岩体侵入,低速层低界面起伏不平反映了该区的逆冲推覆构造.中下地壳速度横向上连续变化,平均速度较低(约6.26 km·s~(-1)).四川盆地沉积层西厚东薄,并在西侧出现与挤压和剥蚀作用相关的压扭形态.中下地壳西薄东厚,平均速度较高(约6.39 km.s~(-1)).龙门山断裂带是地壳速度和厚度的陡变带,Moho面自西向东抬升约13 km.在整个剖面上Moho面表现为韧性挠曲,中下地壳横向上连续变化,推测古扬子块体已到达松潘甘孜块体下方.松潘甘孜块体下方中下地壳韧性变形,并在底部拖曳着被断裂切割的脆性上地壳,应力在不同断裂上积累和释放,诱发大量地震.  相似文献   

7.
青藏高原东缘及四川盆地的壳幔导电性结构研究   总被引:24,自引:16,他引:8       下载免费PDF全文
自从2008年MS8.0级汶川大地震发生以来,青藏高原东缘便成为地质与地球物理研究的热点区域.该区域的龙门山断裂带标志着青藏高原东缘与四川盆地的边界.汶川地震即发生于龙门山断裂带内的映秀-北川断裂上.该地区现有的研究工作多集中于青藏高原东缘及四川盆地的西部,对四川盆地东部构造情况的研究目前较少.在SinoProbe项目的资助下,完成了一条跨越青藏高原东缘及整个四川盆地的大地电磁测深剖面.该剖面自西北始于青藏高原内部的松潘-甘孜地块,向东南延伸穿过龙门山断裂带、四川盆地内部及四川盆地东部的华蓥山断裂,最终止于重庆东南的川东滑脱褶皱带附近.维性分析表明剖面数据整体二维性较好,通过二维反演得到了最终的电性结构模型.该模型表明,从电性结构上看,沿剖面可分为三个主要的电性结构单元,分别为:浅部高阻、中下地壳低阻的松潘-甘孜地块,浅部低阻、中下地壳相对高阻的四川盆地,以及华蓥山以东整体为高阻特征的扬子克拉通地块.龙门山断裂带在电性结构上表现为倾角较缓、北西倾向的逆冲低阻体,反映了青藏高原东缘相对四川盆地的推覆作用.其在地下向青藏高原内部延伸,深度约为20 km左右.在标志逆冲推覆滑脱面的低阻层下存在一电性梯度带,表征着低阻的青藏高原中下地壳与高阻的扬子地壳之间的电性转换.位于四川盆地东边界的华蓥山断裂在电性结构上表现为一倾向为南东向的低阻体插入高阻的扬子克拉通结晶基底,切割深度约为30 km左右.这一结构反映出华蓥山向西的推覆作用.在电性结构模型的基础上,进一步讨论了青藏高原东缘的壳内物质流、青藏块体与扬子块体的深部关系以及青藏高原东部的隆升机制等构造问题.  相似文献   

8.
扇形边界条件下的龙门山壳幔电性结构特征   总被引:10,自引:8,他引:2       下载免费PDF全文
沿甘肃碌曲-四川龙门山-重庆合川布设了长周期大地电磁剖面,对龙门山及邻区进行了壳幔电性结构探测,采用更直观合理的扇形边界条件下的反演算法对长周期大地电磁资料进行二维反演.该剖面电性结果揭示了自北西向南东岩石圈深部的若尔盖壳幔高阻块体、松潘壳幔低阻带、龙门山壳幔高阻块体和川中壳幔高阻块体电性结构特征;龙门山逆冲推覆构造带下方的龙门山壳幔高阻体显示为向北西延伸的楔形构造,推断龙门山及松潘-甘孜地块由于受青藏高原东缘和上扬子地块双向挤压,松潘-甘孜地块地壳物质向龙门山逆冲推覆,中下地壳至上地幔向下向南东俯冲,呈现上扬子地块西缘壳幔高阻楔形体插入青藏高原东缘的态势;初步认为上扬子地块西缘深部以松潘壳幔韧性剪切带作为中新生代以来的边界.  相似文献   

9.
成都平原最大可能地震能力估计   总被引:4,自引:1,他引:4  
成都平原位于青藏高原的东南缘,紧靠龙门山推覆构造带。近代地壳运动,断裂活动和地震活动水平应介于青藏高原活动构造区和四川盆地弱活动构造区的过渡地带。本文从构造类比角度对成都平原的最大可能地震能力进行了评估;结果表明其最大可能地震能力高于该区的地震史载水平。其中,蒲江-新津-成都德阳断裂可达6±0.5级,大邑-彭县-绵竹隐伏断裂可达5.6级左右。  相似文献   

10.
龙门山中南段地壳上地幔三维密度结构   总被引:1,自引:1,他引:0  
基于高精度布格重力异常资料,以川滇地区P波速度三维层析成像结果为约束建立初始模型,采用预优共轭梯度(Preconditional Conjugate Gradiem,PCG)反演方法得到了龙门山断裂带中南段的地壳上地幔(深度范围0~65km)三维密度结构(网格间距为10km(横向)×10km(纵向)×5km(深度))。密度成像结果表明:龙门山断裂带中南段两侧地壳密度结构存在明显差异,四川盆地有约10km厚的低密度沉积层,松潘-甘孜块体因沉积层较薄,且部分地区有基岩出露,上地壳表现为高密度结构;松潘-甘孜块体中、下地壳有大范围低密度层分布,介质强度明显低于高密度的四川盆地,青藏高原东移物质受到四川盆地阻挡后更易于在低密度的一侧发生挤压形变及隆升,从而形成龙门山逆冲推覆构造带;龙门山断裂带内部在地壳结构上具有明显的分段特征,表现为沿着龙门山断裂带地壳密度变化不连续,以汶川地震和芦山地震震中为界,形成多个高、低密度异常区;同时,结合地震精定位结果分析,汶川地震及其余震多分布于壳内中央断裂带西侧高密度体内,芦山地震及其余震则集中在地壳密度变化梯级带附近并偏向高密度体一侧。四川盆地下地壳密度较高,其前缘随深度增加向青藏高原方向扩展,在上地幔顶部接近龙门山断裂带以西。松潘-甘孜块体中、下地壳虽然有一定规模的低密度体分布,但其连通性差,在平面上多形成局部低密度异常区,是否存在下地壳流仍无法给出明确的证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号