首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70/110 km), extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.  相似文献   

2.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

3.
Seasonal variations in the auroral E-region neutral wind for different solar activity periods are studied. This work is based on neutral wind data obtained over 56 days between 95–119 km altitude under geomagnetic quiet conditions (Ap<16) during one solar cycle by the European Incoherent Scatter radar located in northern Scandinavia. In general, the meridional mean wind shifts northward, and the zonal mean wind increases in eastward amplitude from winter to summer. The zonal mean wind blows eastward in the middle and lower E-region for each season and for each solar condition except for the equinox, where the zonal mean wind blows westward at and below 104 km. Solar activity dependence of the mean wind exists during the winter and equinox seasons, while in summer it is less prominent. Under high solar activity conditions, the altitude profiles of the horizontal mean winds in winter and the equinoxes tend to resemble those in summer. The horizontal diurnal tide is less sensitive to solar activity except during summer when the meridional amplitude increases by ∼10 m s−1 and the corresponding phase shifts to a later time period (1–2 h) during high solar activity. Seasonal dependence of the semidiurnal tide is complex, but is found to vary with solar activity. Under low solar activity conditions the horizontal semidiurnal amplitude shows seasonal dependence except at upper E-region heights, while under high solar activity conditions it becomes less sensitive to seasonal effects (except for the meridional component above 107 km). Comparisons of mean winds with LF and UARS observations are made, and the driving forces for the horizontal mean winds are discussed for various conditions.  相似文献   

4.
The first meteor radar measurements of meridional winds in the lower thermosphere (about 95 ± 5 km), along four azimuth directions: 0°, 90°E, 180° and 90°W; approximately 2° from the geographic South Pole were made during two observational campaigns: January 19, 1995-January 26, 1996, and November 21, 1996-January 27, 1997. Herein we report analyses of the measurement results, obtained during the first campaign, which cover the whole one-year period, with particular emphasis on the transient nature and seasonal behavior of the main parameters of the intradiurnal wind oscillations. To analyze the data, two complementary methods are used: the well-known periodogram (FFT) technique and the S-transform technique. The most characteristic periods of the intradiurnal oscillations are found to be rather uniformly spread between about 7 h and 12 h. All of these oscillations are westward-propagating with zonal wave number s = 1 and their usual duration is confined to several periods. During the austral winter season the oscillations with periods less than 12 h are the most intensive, while during summer season the 12-h oscillations dominate. Lamb waves and internal-gravity wave propagation, non-linear interaction of the short-period tides, excitation in situ of the short period waves may be considered as possible processes which are responsible for intradiurnal wind oscillations in the lower thermosphere over South Pole.  相似文献   

5.
Meterological rocket soundings, launched between 1969–74 at six locations representative of low, middle, and high altitudes, are employed with the use of the statistical theory of diffusion, to determine the zonal and meridional component of eddy diffusivity between 30 and 55 km as a function of season, latitude, and altitude. A comparison is also made between annually-averaged eddy diffusivities above and below 30 km.It is shown that the zonal component of eddy diffusivity is approximately three to five times as large as the meridional component, in most cases. Both components of eddy diffusivity vary greatly with season, latitude, and altitude. Highest eddy diffusivities, found in the vicinity of the winter westerly jet, are approximately one order of magnitude higher than those present during the summer. Tropical eddy diffusivities, however, remain relatively small throughout the year. Annually, a minimum is indicated near 25 km between maximums located at the stratopause and tropopause.  相似文献   

6.
Zonal mean data and amplitudes and phases of planetary zonal waves were derived from daily hemispheric maps for tropospheric and stratospheric levels, for the four winters 1975–76 to 1978–79. Important year-to-year fluctuation in zonal means and wave activity are described, most notable of which are the changes from 1975–76 to 1976–77. Comparison of the relative strengths of the stratospheric and tropospheric jet streams shows a strong negative correlation (–0.8) between monthly mean zonal stratospheric winds (at 10 mb, 65°N) and zonal tropospheric winds (at 200 mb, 32.5°N, in the jet core) and a positive correlation (+0.7) between the stratospheric 10 mb winds and the tropospheric 200 mb winds at 65°N. Parameters correlated were the departures from the climatological mean zonal winds. The structure of correlation between wave amplitudes in the same wave number (1, 2) at different altitudes and between wave numbers 1 and 2 is investigated. We find a high correlation (+0.93) between wave 1 in the stratosphere (10 mb height) and wave 2 (height) in the troposphere at 65°N; but only a weak correlation (+0.2) between wave 1 amplitudes in the stratosphere and troposphere. These results suggest the possible importance of wave-wave interactions in processes linking the stratosphere and troposphere. The wave correlations presented here are based on comparisons of monthly means of daily amplitudes; the correlation structure in individual wave developments may differ, in view of the likelihood of altitudinal lags in wave amplification.  相似文献   

7.
With the launch of the TIMED satellite in December 2001, continuous temperature and wind data sets amenable to MLT tidal analyses became available. The wind measuring instrument, the TIMED Doppler Interferometer (TIDI), is operating since early 2002. Its day- and nighttime capability allows to derive tidal winds over a range of MLT altitudes. This paper presents climatologies (June 2002–June 2005) of monthly mean amplitudes and phases for six nonmigrating semidiurnal tidal components between 85 and 105 km altitude and between 45°S and 45°N latitude (westward propagating wave numbers 4, 3, 1; the standing oscillation s0; and eastward propagating wave numbers 1, 2) in the zonal and meridional wind directions.Amplitude errors are 15–20% (accuracy) and 0.8 m/s (precision). The phase error is 2 h. The TIDI analysis agrees well with 1991–1994 UARS results at 95 km. During boreal winter, amplitudes of a single component can reach 10 m/s at latitudes equatorward of 45°. Aggregate effects of nonmigrating tides can easily reach or exceed the amplitude of the migrating tide. Comparisons with the global scale wave model (GSWM) and the thermosphere–ionosphere–mesosphere–electrodynamics general circulation model (TIME-GCM) are partly inconclusive but they suggest that wave–wave interaction and latent heat release in the tropical troposphere both play an important role in forcing the semidiurnal westward 1, westward 3, and standing components. Latent heat release is the leading source of the eastward propagating components.  相似文献   

8.
Meteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s = 1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s = 1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5–10 ms–1) during early January and maxima (15–20 ms–1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4–6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (±5–10 ms–1 in amplitude) with distinct periods (i.e., 5 days and 8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78°S is s = 1, but that at 68°S there is probably a mixture between s = 1 and other zonal wavenumber oscillations (most probably s = 2). The mechanism responsible for the existence of the 12-h s = 1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s = 1 feature, and thermal excitation in the troposphere.  相似文献   

9.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

10.
Averaged seasonal variations of wind perturbation intensities and vertical flux of horizontal momentum produced by internal gravity waves (IGWs) with periods 0.2/1 h and 1/6 h are studied at the altitudes 65/80 km using the MU radar measurement data from the middle and upper atmosphere during 1986/1997 at Shigaraki, Japan (35°N, 136°E). IGW intensity has maxima in winter and summer, winter values having substantial interannual variations. Mean wave momentum flux is directed to the west in winter and to the east in summer, opposite to the mean wind in the middle atmosphere. Major IGW momentum fluxes come to the mesosphere over Shigaraki from the Pacific direction in winter and continental Asia in summer.  相似文献   

11.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   

12.
In this paper, we report the results of our comparison study between satellite measurements and the International Reference Ionosphere (IRI) model on the seasonal and longitudinal changes of the low-latitude nighttime topside ionosphere during the period of solar maximum from June 2000 to July 2001. Satellite measurements were made by KOMPSAT-1 and DMSP F15 at 685 km altitude and 840 km altitude, respectively. The results show that the IRI2001 model gives reasonable density estimations for the summer hemisphere and the March equinox at both altitudes. However, the observed wintertime densities are smaller than the predictions of the IRI2001 model, especially at a higher (840 km) altitude, manifesting strong hemispheric asymmetries. The observed electron temperatures generally reside between the two estimations of IRI2001, one based on the Aeros–ISIS data and the other based on Intercosmos, and the latter estimation better represents the observations. With more or less monotonic increase with latitude, the temperature profiles of the IRI2001 model do not predict the enhancement seen around 15° magnetic latitude of the winter hemisphere. Longitudinal variation, probably caused by the zonal winds, is seen in all seasons at both altitudes, while the IRI2001 model does not show a large variation. The observed density and temperature show significant changes according to the F10.7 values in the whole low-latitude region from 40°S to 40°N geomagnetic latitude. The effect is manifested as increases in the density and temperature, but not in the hemispheric asymmetry or in the longitudinal variation.  相似文献   

13.
Spectral analysis of Tirunelveli (8.7°N, 77.8°E) MF radar winds for the year 2007 indicate the presence of long-period Kelvin waves with periods ~23 and ~16 days in the low-latitude mesosphere during Indian summer monsoon months. The dominant presence of these slow-phase speed waves at mesospheric altitudes motivated us to investigate their origin and vertical propagation characteristics. Space-time Fourier analysis of NCEP winds and OLR show the presence of these periodicities with zonal wavenumber 1 indicating that tropical convection is the potential source for these waves and westward phase of stratospheric QBO winds might have favoured these waves to reach the mesosphere.  相似文献   

14.
Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00) with higher accuracy of timing (0.1 s) and amplitude resolution (0.01 nT) were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT) during PROMIS (Polar Region and Outer Magnetosphere International Study) periods (1 March–20 June, 1986). It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane.  相似文献   

15.
Summary The mean zonal and meridional wind components of the northern hemisphere at different pressure levels for the summer season June–August have been determined and the mean meridional mass circulation has been computed as a function of latitude. From the mass circulation the meridional flux of moisture is computed for the latitudinal belt 0°–45° N. Using the horizontal divergence of this flux the average difference between precipitation and evapotranspiration from the earth's surface is evaluated.  相似文献   

16.
On the basis of MEM spectrum analysis, the main planetary scale fluctuations formed in the lower ionosphere are studied over a period of 3–25 days during the CRISTA campaign (October-November 1994). Three dominant period bands are found: 3–5, 6–8 and 15–23 (mainly 16–18) days. For 7–8 and 16–18 day fluctuations, propagation was eastward with wave numbers K = 3 and K = 1, respectively. The magnitude of planetary wave activity in the mid-latitudes of the Northern Hemisphere during the CRISTA campaign seems to be fairly consistent with the expected undisturbed normal/climatological state of the atmosphere at altitudes of 80–100 km.  相似文献   

17.
Semidiurnal tidal features have been examined in the Mesosphere and Lower Thermosphere (MLT) from the long-term (2002–2007) meteor wind data over Maui (20.75°N, 156.43°W). Amplitude and phase obtained from the harmonic analysis exhibit large day to day variability. Mean amplitude obtained from the monthly mean data over the observation period is found to vary within ~8–28 m/s and 10–32 m/s for the zonal and meridional winds, respectively. The amplitude has revealed clear semiannual oscillation (SAO) pattern with maxima during solstices and altitudinal growth in both wind components. Significant resemblance in its variability with other observations carried out from the low latitude sites all over the globe is obtained. Vertical wavelength estimated from the phase gradients exposes large values (>90 km) in all seasons. Contribution of the semidiurnal tide to the total tidal variability in the MLT is found to vary over wide range throughout the year with generally higher influence during winter season over diurnal and terdiurnal components.  相似文献   

18.
Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99.Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere.Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10–20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced turbulence rates and an increase of gravity wave activity in the altitude range 70–85 km.  相似文献   

19.
Saskatoon (52° N, 107°W) medium frequency (MF) radar data from 1979 to 1993 have been analyzed to investigate the climatology of irregular wind components in the height region 60–100 km. This component is usually treated in terms of internal gravity waves (IGW). Three different band-pass filters have been used to separate the intensities of IGWs having periods 0.2-2.5; 1.5-6 and 2–10 h, respectively. Height, seasonal and inter-annual variations of IGW intensities, anisotropy and predominant directions of propagation are investigated. Mean over 14 years’ seasonal variation of the intensity of long-period IGWs shows a dominant annual component with winter maximum and summer minimum. Seasonal variations of the intensity of short-period waves have a strong semi-annual component as well, which forms a secondary maximum in summer. Predominant azimuths of long-period IGWs are generally zonal, though they vary with season. For short-period IGWs, the predominant azimuth is closer to the meridional direction. Anisotropy of IGW intensity is larger in summer, winter and at lower altitudes. The IGW intensity shows apparent correlation with both solar and geomagnetic activity. In most cases, this correlation appears to be negative. The variations versus solar activity is larger for longer-period IGW. Possible reasons and consequences of the observed climatological variations of IGW intensity are discussed.  相似文献   

20.
In this paper, the 6.5-day planetary waves over Wuhan (30.5°N, 114.3°E) were investigated on the basis of the meteor radar measurements within 78–98 km height region during February 2002–December 2005. The observations show that 6.5-day waves have a prominent seasonal variability and have larger amplitudes at equinoxes than at solstices. We also found that intensive waves occur mostly between 84 and 98 km, and the zonal components of 6.5-day waves are a little larger than its meridional components on average. The main periods of 6.5-day waves are near 6–7 days in spring/winter season and 5–7 days (even extend to 8 days) in autumn months. However, these waves exhibit a downward progression when the amplitude is large. Robust wave events occur basically in eastward background winds. During the 4-year interval, the strongest waves were found in Apri–-May of 2003 and 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号