首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Based on 23 U/Th analyses and 532 oxygen isotopic data, an averaged 80-a stalagmite oxygen isotopic composition series was established through 95 to 56 thousand years before present (ka BP) from two speleothems in Shanbao Cave, Shennongjia, central China. Shanbao Cave record (referred to as SB record) replicates well with Hulu Cave record, extending the characteristics of millennial oscillations in East-Asian-Summer-Monsoon (EASM) to the past 95 ka. The trend of the SB record generally follows mid-July solar insolation at 65°N, suggesting that mid-high northern latitude insolation, in the first order, controls changes of EASM intensity. Millennial oscillations of EASM recorded in the stalagmites are well related to the Greenland interstadials referred to as Dansgaard/Oeschger (D/O) events from 1 to 22, indicating that rapid ocean-atmosphere reorganization in North Atlantic has a remote effect in EASM. The well-dated D/O events by stalagmites probably provide an absolute calibration for chronologies of Greenland ice cores. The timings of D/O events in the SB record are different variously from those in Greenland ice cores. For D/O 19 and 20, the age offsets between the stalagmites' and the Greenland ice cores' record are significant, larger than the uncertainties of uranium-series dating. The two events in the SB record are younger than those in North GRIP time scale by 1―2 ka, and older than the counterparts in GISP2 by approximately 3―4 ka. A comparison between the SB and Brazil stalagmite record shows an anti-phase relation in millennial-scale monsoon precipitation between the two localities. This supports a mode for the coupled ocean-atmosphere "See-saw".  相似文献   

2.
    
Based on 23 U/Th analyses and 532 oxygen isotopic data, an averaged 80-a stalagmite oxygen isotopic composition series was established through 95 to 56 thousand years before present (ka BP) from two speleothems in Shanbao Cave, Shennongjia, central China. Shanbao Cave record (referred to as SB record) replicates well with Hulu Cave record, extending the characteristics of millennial oscillations in East-Asian-Summer-Monsoon (EASM) to the past 95 ka. The trend of the SB record generally follows mid-July solar insolation at 65°N, suggesting that mid-high northern latitude insolation, in the first order, controls changes of EASM intensity. Millennial oscillations of EASM recorded in the stalagmites are well related to the Greenland interstadials referred to as Dansgaard/Oeschger (D/O) events from 1 to 22, indicating that rapid ocean-atmosphere reorganization in North Atlantic has a remote effect in EASM. The well-dated D/O events by stalagmites probably provide an absolute calibration for chronologies of Greenland ice cores. The timings of D/O events in the SB record are different variously from those in Greenland ice cores. For D/O 19 and 20, the age offsets between the stalagmites’ and the Greenland ice cores’ record are significant, larger than the uncertainties of uranium-series dating. The two events in the SB record are younger than those in North GRIP time scale by 1–2 ka, and older than the counterparts in GISP2 by approximately 3–4 ka. A comparison between the SB and Brazil stalagmite record shows an anti-phase relation in millennial-scale monsoon precipitation between the two localities. This supports a mode for the coupled ocean-atmosphere “See-saw”. Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD, No. 200227) and China National Outstanding Youth Science Foundation (Grant No. 40225007)  相似文献   

3.
Relative sea-level (RSL) observations from the margins of the Greenland Ice Sheet (GIS) provide information regarding the timing and rate of deglaciation and constraints on geophysical models of ice sheet evolution. In this paper we present the first RSL record for the southeast sector of the GIS based on field observations completed close to Ammassalik. The local marine limit is c. 69 m above sea-level (asl) and is dated to c. 11 k cal. yrs BP (thousand calibrated years before present) and is a minimum date for ice free conditions at the study site. RSL fell to c. 24 m asl by 9.5 k cal. yrs BP and continued to fall at a decreasing rate to reach close to present by 6.5 k cal. yrs BP. Our chronology agrees with radiocarbon dates from offshore cores that indicate ice free conditions on the adjacent mid-shelf by 15 k cal. yrs BP. We compare the new RSL data with predictions generated using two recently published glaciological models of the GIS that differ in the amount and timing of ice loading and unloading over our study area. These two GIS models are coupled to the same Earth viscosity model and background (global) ice model to aid in the data-model comparison. Neither model provides a close fit to the RSL observations. Based on a preliminary sensitivity study using a suite of Earth viscosity models, we conclude that the poor data-model fit is most likely due to an underestimate of the local ice unloading. An improved fit could be achieved by delaying the retreat of a thicker ice sheet across the continental shelf. A thick ice sheet extending well onto the continental shelf is in agreement with other recent observations elsewhere in east and south Greenland.  相似文献   

4.
Changes of climate, especially the abrupt changesof precipitation and temperature lead frequently tograve effect in human productive and living activity.Since the 1950s, results of monitoring indicate thatatmosphere CO2 concentration rises by 1.4×10?6g/gevery year. The atmospheric greenhouse effect leadsprobably to global warming since the 1940s, whichbrings furthermore special attention of scientists andrelevant government organizations in various coun-tries. In the near 20 years, the …  相似文献   

5.
南疆博斯腾湖末次冰消期新仙女木事件的记录   总被引:4,自引:0,他引:4  
钟巍 《湖泊科学》1999,11(1):28-32
通过对ZK2孔多环境代用指标的综合分析,重建了4500年来鄱阳湖湖口地区古环境历史。研究表明:4500aBP以来,鄱阳湖湖口地区经历了多次冷暖,干湿交替。  相似文献   

6.
Temperature and methane records over the last 2 ka in Dasuopu ice core   总被引:4,自引:0,他引:4  
High resolution δ18O and methane records over the last 2ka have been reconstructed from Dasuopu ice core recovered from the Himalayas. Analysis shows that the δ18O record correlates well with the Northern Hemispheric temperature, Dunde ice core record, and with temperature record in eastern China. The warming trend detected in δ18O record from the last century is similar to that during the Medieval warm period. There is a dramatic increasing in methane concentration in the Dasuopu ice core, which reached 1031 nmol ⋅ mol-1 in 1997. Moreover, methane concentration in the Dasuopu ice core is about 15%-20% higher than that in Antarctica and Greenland. There is a positive correlation between methane concentration and δ18O in Dasuopu ice core.  相似文献   

7.
The climatic and environmental variations since the Last Interglaciation are reconstructed based on the study of the upper 268 m of the 309-m-long Guliya ice core. Five stages can be distinguished since the Last Interglaciation from the δ18O record in the Guliya ice core: Stage 1 (Deglaciation), Stage2 (the Last Glacial Maximum), Stage 3 (interstadial), Stage 4 (interstadial in the early glacial maximum) and Stage 5 (the Last Interglaciation). Stage 5 can be divided further into 5 substages; a, b, c, d, e. The δ18O record in the Guliya ice core indicates clearly the close correlation between the temperature variation on the Tibetan Plateau and the solar activities. The study indicates that the solar activity is a main forcing to the climatic variation on the Tibetan Plateau. Through a comparison of the ice core record in Guliya with that in the Greenland and the Antarctic, it can be found that the variation of large temperature variation events in different parts of the world is generally the same, but the variation amplitude of temperature is different. Project supported by thc Climbing Program of the State Eighth Five-Year Plan and the National Natural Science Foundation of China.  相似文献   

8.
A mass-spectrometric uranium-series dated stalagmite from the Central Alps of Austria provides unprecedented new insights into high-altitude climate change during the peak of isotope stage 3. The stalagmite formed continuously between 57 and 46 kyr before present. A series of ‘Hendy tests’ demonstrates that the outer parts of the sample show a progressive increase of both stable C and O isotope values. No such covariant increase was detected within the axial zone. This in conjunction with other observations suggests that the continuous stable oxygen isotope profile obtained from the axial zone of the stalagmite largely reflects the unaltered isotopic composition of the cave drip water. The δ18O record shows events of high δ18O values that correlate remarkably with Interstadials 15 (a and b), 14 and 12 identified in the Greenland ice cores. Interstadial 15b started rapidly at 55.6 kyr and lasted ∼300 yr only, Interstadial 15a peaked 54.9 kyr ago and was even of shorter duration (∼100 yr), and Interstadial 14 commenced 54.2 kyr ago and lasted ∼3000 yr. This stalagmite thus represents one of the first terrestrial archives outside the high latitudes which record precisely dated Dansgaard-Oeschger (D/O) events during isotope stage 3. Provided that rapid D/O warmings occurred synchronously in Greenland and the European Alps, the new data provide an independent tool to improve the GRIP and GISP2 chronologies.  相似文献   

9.
The present study utilises different satellite and ground-based geodetic observations in order to assess the current evolution of the Greenland Ice Sheet (GIS). Satellite gravimetry data acquired by the Gravity Recovery and Climate Experiment are used to derive ice-mass changes for the period from 2003 to 2012. The inferred time series are investigated regarding long-term, seasonal and interannual variations. Laser altimetry data acquired by the Ice, Cloud, and land Elevation Satellite (ICESat) are utilised to solve for linear and seasonal changes in the ice-surface height and to infer independent mass-change estimates for the entire GIS and its major drainage basins. We demonstrate that common signals can be identified in the results of both sensors. Moreover, the analysis of a Global Positioning System (GPS) campaign network in West Greenland for the period 1995–2007 allows us to derive crustal deformation caused by glacial isostatic adjustment (GIA) and by present-day ice-mass changes. ICESat-derived elastic crustal deformations are evaluated comparing them with GPS-observed uplift rates which were corrected for the GIA effect inferred by model predictions. Existing differences can be related to the limited resolution of ICESat. Such differences are mostly evident in dynamical regions such as the Disko Bay region including the rapidly changing Jakobshavn Isbræ, which is investigated in more detail. Glacier flow velocities are inferred from satellite imagery yielding an accelerated flow from 1999 to 2012. Since our GPS observations cover a period of more than a decade, changes in the vertical uplift rates can also be investigated. It turns out that the increased mass loss of the glacier is also reflected by an accelerated vertical uplift.  相似文献   

10.
A high-resolution climate record from 163.00 kaBP to 113.80 kaBP has been obtained through TIMS-U series dating and carbon and oxygen isotope analysis of the three large stalagmites from two caves in the south of Guizhou Province, China. The record of the oxygen isotopes from the stalagmites reveals that the undulation characteristics between the cooling event of the glacial period and the warming event of the interglacial period in the research area can compare well to those of ice cores, lake sediments, loess and deep sea sediments on the scale of ten-thousand years or millennium time scale. The climate undulation provided by the record of the stalagmites has a coherence with the global changes and a tele-connection to the paleoclimate changes in the north polar region. Our results suggest that the direct dynamics of paleo-monsoon circulation changes reflected in the record of the stalagmites might be caused by changes of the global ice volume, and in turn related to various factors, including the solar radiation strength at the mid-latitudes in the Northern Hemisphere, the southern extension of the ice-rafted event in the North Atlantic, and changes of the equatorial Pacific sea surface temperature at the low-latitudes. Using °18O values, we have calculated the temperatures and the results show that the temperature difference between the penultimate glacial period (with an average temperature of 8.1°C, and a minimum temperature range from 0.65°C to-1.43°C at stage 6) and the last interglacial period (with an average temperature of 18.24°C at sub-stage 5e) was about 10°C. This temperature difference from the record of the stalagmites corresponds in general to the record temperature variation (about 10°C) of measured ice cores. The climate records from the three stalagmites in the two caves have shown that the circulation strength of the Asian summer monsoon and the winter monsoon in the penultimate glacial period and the last inter-glacial period had a clear change. With the TIMS-U series method, termination II of the penultimate glacial period has been precisely dated at an age of (129.28± 1.10) kaBP for the three stalagmites in the south of Guizhou Province, China. This borderline age represents the beginning of the last interglacial period or the boundary between the Middle Pleistocene and the Late Pleistocene, and corresponds to the beginning age of the last interglacial period shown by the ice cores and in the SPECMAP curve of the marine oxygen isotopes. The chronology determination of termination II is not only of stratigraphic and chronological significance, but also lays an important foundation for discussing the short time scales of climate oscillation and rapidly changing events of paleoclimate in the circulation region of the East Asian monsoon.  相似文献   

11.
A 400-mm-long stalagmite from Tangshan Cave, Nanjing has been analyzed by a high-precision TIMS-U series dating method and also determined for oxygen and carbon stable isotopic compositions. The results provided a high-resolution paleoclimate record for eastern China during a time interval (from 54 000 to 19 000 aBP) of the last glaciation. The continuous record of oxygen-18 variations in the stalagmite, indicating a precipitation history of the East Asian monsoon, shows not only signals of the Heinrich events, but also the Dansgaard-Oeschger cycles which are first found in the last glacial climate record of the East Asian monsoon area. Although the stalagmite-based climatic signals match well with the GRIP ice core record, some differences between the two records can be recognized: (1) The last glacial climate changes in eastern China exhibited a long-term remarkably cooling trend, superimposed on which were four successive Bond’s cycles illustrated by the δ18O curve. This strong cooling tendency may be an effect of the strong summer monsoon event during the MIS 3 over the Tibetan Plateau. (2) There exist some phase differences of 1000–2000 years between the cooling events in the stalagmite-based climate signal and the GRIP ice core record. Such differences should be further verified by calibrations of multiple dating methods  相似文献   

12.
近百年来亚洲中部内陆湖泊演变及其原因分析   总被引:7,自引:1,他引:6  
秦伯强 《湖泊科学》1999,11(1):11-19
南疆博斯腾湖湖相沉积物碳酸盐稳定同位素,孢粉及地化元素含量的波动揭示了于11.0 ̄10.0kaBP期间的相对冷湿的环境特征,这次变冷事件在年代上可与末次冰消期的新仙女木气候突然变冷事件相对应,虽然目前还无法圆满解释此事件的成因机制,但此事件在极端干昌的南疆博斯腾湖湖相沉积中的发现,无疑对深入认识此事件发生的全球性以及探讨其成因机制具有重要意义。  相似文献   

13.
Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.  相似文献   

14.
A 26-cm-long stalagmite (XY2) from Xinya Cave in northeastern Chongqing of China has been ICP-MS 230Th/U dated, showing a depositional hiatus at 2.3 cm depth from the top. The growth of the 2.3-26 cm interval determined by four dates was between 57 ka and 70 ka, with a linear growth rate of 0.023 mm/a.We have analyzed 190 samples for δ18O and δ13C, mostly in the 2.3-26 cm part. The δ18O and δ13C values between 57 ka and 70 ka reveal decadal-to-centennial climatic variability during the glacial interval of Marine Isotope Stage 4 (MIS4), exhibiting much higher resolution than that of the published Hulu and Dongge records during this interval. Speleothem δ18O in eastern China, including our study area can be used as a proxy of summer monsoon strength, with lighter values pointing to stronger summer monsoon and higher precipitation, and vice versa. Two decreases in the δ18O signature of XY2 record around 59.5 and 64.5 Ka are argued to correspond to the Dansgaard-Oeschger (D-O) events 17 and 18 respectively. The Heinrich event 6 (H6) can be identified in the record as a heavy δ18O peak around 60 ka, indicating significant weakening of the monsoon in Chongqing during the cold period.The XY2 δ18O record shows very rapid change toward to the interstadial condition of the D-O event, but more gradual change toward to the cold stadial condition. This phenomenon found in the Greenland ice core records is rarely observed so clearly in previously published speleothem records. According to SPECMAP δ18O record, the glacial maximum of MIS 4 was around 64.5 ka with the boundary of MIS 3/4 around 60 ka. Unlike the marine record, the speleothem record of XY2, China, exhibits much high frequency variations without an apparent glacial maximum during MIS 4. However, the timing of MIS 3/4 boundary seems to be around 60 ka when the H6 terminated, in agreement with the marine chronology.The growth period of sample XY2 during glacial times probably reflects a local karstic routing of water,rather than having climatic significance.  相似文献   

15.
Based on interpolation of thermoluminescence dates and the mean accumulation rate of 0.034 mm yr?1, four cycles of pedogenic CaCO3 accumulation are found within the Loveland Loess: 415–325 ka, 325–250 ka, 250–195 ka and 195–95 ka. The four CaCO3 peaks correspond chronologically to marine oxygen isotope stages 11, 9, 7 and 5, respectively. The early Wisconsin (95–70 ka) was characterized by sand dune activity. The reddish pedocomplex was formed from 70 to 35 ka under relatively warm and moist climatic conditions with a very slow rate of silt accumulation (0·016 mm yr?1). The Gilman Canyon pedocomplex, enriched in organic matter and dated at 35–20 ka, was formed under a strong physical weathering regime and a relatively high rate of silt accumulation (0·15 mm yr?1), indicating a windy, relatively moist, probably cool environment. It developed when the Laurentide ice sheet was advancing and dust content in Greenland ice core was low. The Peoria Loess was accumulated at a rate of 0·3 mm yr?1 in central Kansas under cold dry conditions when the ice sheet fluctuated around its maximum position and the dust content in the Greenland ice core was the highest. Even the warm substage around 13 ka has some corresponding evidence in the central Great Plains. The well-developed Brady Soil, dated at 10·5–8·5 ka, indicates that the early Holocene was the optimal time for soil development since 20 ka. The poorly weathered Bignell Loess might have been deposited during the Altithermal Period from 8·5 to 6 ka.  相似文献   

16.
The results of numerous rock magnetic and paleomagnetic studies of Pleistocene deposits in the Loess Plateau in China which were obtained over a period of a few decades are analyzed. It is shown that two important problems remain unsolved. These are (1) developing the particular mechanism of “magnetic enhancement” in the soils, probably with a more accurate assessment of the level of effect of various natural factors causing qualitative changes in the magnetic fraction of the soil. Here, both the chemical composition of the newly crystallized magnetic mineral causing this enhancement and the parameters of the corresponding secondary (chemical) magnetization process should be determined. (2) Fixing the exact climate-stratigraphic position of the main paleomagnetic benchmarks of the Pleistocene, primarily the Matuyama–Brunhes reversal. In contrast to many conclusions, it is inferred that the Pleistocene paleoclimatic loess-soil record in China generally disagrees with the oxygen isotope (OI) record in the deep-sea sediments. This inconsistency is particularly significant for the Matuyama chron deposits.  相似文献   

17.
The Bering Sea, located in the Subarctic Northern Pacific Ocean, plays an important role in the global carbon cycle and modern and past global climatic sys-tems, which originates from a very effective biological pump, indicating much higher biogenic opal produc-tion than calcium carbonate[1]. Measured biological particular fluxes show that the flux in the Bering Sea is twice over that in the open ocean. Thereby, the Ber-ing sea is thought as a CO2 sink[2]. At the same time, the Bering Sea…  相似文献   

18.
To evaluate the change in magnetic remanence with altitude through a slowly-cooled Precambrian basement terrain three vertical sections have been sampled in West Greenland. The study employs the principle that higher structural levels passed through their blocking temperatures earlier than lower levels and therefore record earlier pole positions, and it utilises dolerites and diorites intruded late in, or after, the tectonic history to minimise anisotropy effects. In the amphibolite facies terrain at Qa´qatoqaq (1400 m) highly-stable magnetite-held remanences move on demagnetisation progressively along small circles interpreted to record younger to older apparent polar wander (a.p.w.) motions during cooling through the blocking temperature ranges. Although the raw data show no systematic variation with altitude, when account is taken of the blocking temperature spectra as defined by thermal demagnetisation there is a systematic change in palaeofield direction in the same sense as that recorded by the demagnetisation trends. Granulite facies terrain at Igdlu´nguit qula?t (600 m) again shows systematic variation with altitude when the sites are divided into those with a remanence dominated by hemo-ilmenite and those dominated by magnetite. A third section at Praestefjeldet (250 m) yields a palaeofield reversal and a high blocking temperature component.The age evidence is evaluated to suggest that the a.p.w. path defined by 5 mean palaeopoles between 318°E, 1°N and 247°E, 38°N represents up to 50 Ma of palaeofield motion recorded by the uplift and cooling of this basement terrain at crustal depths of the order of 10 km. The calculated rate of a.p.w. motion is 1–2°/Ma and the rate of crustal uplift 10–20 m/Ma, these rates are respectively up to an order higher, and at least an order lower, than Phanerozoic rates. The collective data from Greenland agree closely with post-“Hudsonian” poles from the Laurentian Shield and represent part of a very widespread uplift event following this mobile episode. They show that altitude sections can yield a systematic record of the magnitude and direction of Precambrian a.p.w. motions provided that the blocking temperature spectra are taken into account.  相似文献   

19.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

20.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号