首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The stable isotope ratios of groundwater sulfate (34S/32S, 18O/16O) are often used as tracers to help determine the origin of groundwater or groundwater contaminants. In agricultural watersheds, little is known about how the increased use of sulfur as a soil amendment to optimize crop production is affecting the isotopic composition of groundwater sulfate, especially in shallow aquifers. We investigated the isotopic composition of synthetic agricultural fertilizers and groundwater sulfate in an area of intensive agricultural activity, in Ontario, Canada. Groundwater samples from an unconfined surficial sand aquifer (Lake Algonquin Sand Aquifer) were analyzed from multi-level monitoring wells, riverbank seeps, and private domestic wells. Fertilizers used in the area were analyzed for sulfur/sulfate content and stable isotopic composition (δ18O and/or δ34S). Fertilizers were isotopically distinct from geological sources of groundwater sulfate in the watershed and groundwater sulfate exhibited a wide range of δ34S (−6.9 to +20.0‰) and δ18O (−5.0 to +13.7‰) values. Quantitative apportionment of sulfate sources based on stable isotope data alone was not possible, largely because two of the potential fertilizer sulfate sources had an isotopic composition on the mixing line between two natural geological sources of sulfate in the aquifer. This study demonstrates that, when sulfate isotope analysis is being used as a tracer or co-tracer of the origin of groundwater or of contaminants in groundwater, sulfate derived from synthetic fertilizer needs to be considered as a potential source, especially when other parameters such as nitrate independently indicate fertilizer impacts to groundwater quality.  相似文献   

2.
Multiple sulfur and oxygen isotope compositions in Beijing aerosol   总被引:1,自引:0,他引:1  
Multiple sulfur isotopes(32S, 33 S, 34 S, 36S) and oxygen isotopes(16O, 18O) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ34S values of Beijing aerosol samples range from 1.68‰ to 12.57‰ with an average value of 5.86‰, indicating that the major sulfur source is from direct emission during coal combustion. The δ18O values vary from 5.29‰ to 9.02‰ with an average value of 5.17‰, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H2O2 in July and August, whereas H2O2 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur isotope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between ?33S and CAPE.  相似文献   

3.
To improve our knowledge about the geochemical and environmental aftermath of Neoproterozoic global glaciations, we analyzed stable isotopes (δ13C, δ18O, δ34S) and elemental concentrations (Ca, Mg, S, Sr, Fe, and Mn) of the ~ 10-m-thick Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Available chemostratigraphic data suggest that the Tereeken diamictite is probably equivalent to the Marinoan glaciation. Our new data indicate that organic and carbonate carbon isotopes of the Zhamoketi cap dolostone show little stratigraphic variations, averaging ? 28.2‰ and ? 4.6‰, respectively. In contrast, sulfur isotopes show significant stratigraphic variations. Carbonate associated sulfate (CAS) abundance decreases rapidly in the basal cap dolostone and δ34SCAS composition varies between + 9‰ and + 15‰ in the lower 2.5 m. In the overlying interval, CAS abundance remains low while δ34SCAS rises ~ 5‰ and varies more widely between + 10‰ and + 21‰. The range of δ34Spy of the cap dolostone overlaps with that of δ34SCAS, but direct comparison shows that δ34Spy is typically greater than δ34SCAS measured from the same samples. Hypotheses to explain the observations must account for both the remarkable sulfur isotope enrichment of pyrites and the inverse fractionation. We propose that CAS and pyrite were derived from two isotopically distinct reservoirs in a chemically stratified basin or a basin with a sulfate minimum zone. In this model, CAS was derived from shallow, oxic surface waters with moderate sulfate concentration and depleted in 34S due to the post-glacial influx of sulfur from continental weathering. In contrast, pyrite was derived from anoxic bottom waters (or a sulfate minimum zone) with low sulfate concentration and 34S enrichment due to long-term syn-glacial sulfate reduction. The rapid shift in CAS abundance and sulfur isotope composition within the cap dolostone is interpreted to reflect the mixing of the two reservoirs after initial deglaciation. Comparison with other post-Marinoan cap carbonates shows significant spatial heterogeneity in δ34SCAS, which together with strong temporal variation in δ34SCAS, points to generally low sulfate concentrations in post-Marinoan oceans.  相似文献   

4.
Nitrogen contents range from a few parts per million in ordinary chondrites and achondrites to several hundred parts per million in enstatite chondrites and carbonaceous chondrites. Four major isotopic groups are recognized: (1) C1 and C2 carbonaceous chondrites have δ15N of+30to+50%.; (2) enstatite chondrites have δ15N of?30to?40‰; (3) C3 chondrites have low δ15N with large internal variations; (4) ordinary chondrites have δ15N of?10to+20‰. The major variations are primary, representing isotopic abundances established at the time of condensation and accretion. Secondary processes, such as spallation reactions, solar wind implantation and metamorphic loss may cause small but observable isotopic variations in particular cases. The large isotopic difference between enstatite chondrites and carbonaceous chondrites cannot be accounted for by equilibrium condensation from a homogeneous nebular gas, and requires either unusually large kinetic effects, or a temporal or spatial variation of isotopic composition of the nebula. Nitrogen isotopic heterogeneity in the nebula due to nuclear processes has not been firmly established, but may be required to account for the large variations found within the Allende and Leoville meteorites. The unique carbonaceous chondrite, Renazzo, has δ15N of+170%., which is well beyond the range of all other data, and also requires a special source. It is not yet possible, from the meteoritic data, to establish the mode of accretion of nitrogen onto the primitive Earth.  相似文献   

5.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

6.
The Flin Flon Belt of Canada contains Paleoproterozoic volcanic–sedimentary sequences that are related to the Trans‐Hudson Orogeny. The sequences include island arc volcanic and volcaniclastic rocks (Amisk Group) that are unconformably overlain by subaerial sedimentary rocks (Missi Group), and younger deep facies sediments. In the Flin Flon area, several north–south trending faults divide the sequences into blocks and obscure the depositional environment of the deep facies sediments. Locally, within the Flin Flon area, the Embury Lake Formation is in fault contact with island arc volcanic–sedimentary sequences of the Amisk and Missi Groups. To identify the depositional environment of the Embury Lake Formation, we used lithologic and geochemical approaches. Here, we report carbon isotopic values in organic matter (δ13Corg) and sulfur isotopes (δ34S), as well as total organic carbon and total sulfur measurements for the black shale in the formation. Samples were taken from a drill core that contains alternating bands of sandstone and black shale. Pyrite in the black shale is divided into four textural types: euhedral, vein‐type, elliptical, and microcrystalline. Microcrystalline pyrite is typically generated by microbially mediated sulfate reduction. An extremely low S/C ratio (avg. = 0.04) is consistent with lacustrine deposition. The ranges of δ13Corg (?36 ‰ to ?27 ‰) and δ34S (+3.0 ‰ to +7.7 ‰) values can be explained by bacterial photosynthesis that involved Calvin cycle and acetyl CoA pathways, and sulfate reduction in a low‐sulfate environment. Considering the depositional age reported in a previous study of < 1.84 Ga, the Embury Lake Formation was likely emplaced in a lacustrine setting during the Trans‐Hudson Orogeny.  相似文献   

7.
The concentration and isotopic composition of nitrogen, measured in large diamonds (gram size) from the Mbuji Mayi kimberlite district (Zaïre) show a large range of variation (100<N<2100 ppm, ?11.2<δ15N< +6.0). The15N-depleted nitrogen is associated with the higher nitrogen concentrations. The large diamonds are individually rather homogeneous in13C (range ofδ13C < 0.9‰) while variations occur within small octahedral diamonds from the same district (range up to 5.8‰). The total range ofδ13C variation is about the same for the large diamonds (?10.5 <δ13C < ?5.5), the small octahedral diamonds (?10 <δ13C < ?4.6), and the carbonates from local kimberlites (?11.8 < δ13C < ?5.5). The diamond carbon isotopic data could indicate a complex story of crystallization within a deep-seated system fractionating its carbon isotopes.The nitrogen results indicate that nitrogen in diamonds is, on the average, markedly depleted in15N (weighted average ?5.15‰) relative to atmosphere, sediments and upper mantle.  相似文献   

8.
A double-spike method was used to obtain Mo isotope data for sediments and waters of the seasonally anoxic Chesapeake Bay, and its primary tributary, the Susquehanna River. The dissolved Mo distribution in the estuary is non-conservative, reflecting minor Mo loss to the sediments, although removal of Mo to the sediments does not have a large influence on the isotopic composition of the water column. The δ98Mo of dissolved Mo in most of the estuary is dominated by seawater. Six samples with salinity > 15 have an average δ98Mo = + 2.17‰ (± 0.12), which agrees well with a δ98Mo value for the CASS-4 seawater standard of + 2.23‰. A single sample of Susquehanna River water has a δ98Mo of + 1.02‰, consistent with recent findings of positive δ98Mo in rivers worldwide. Susquehanna river sediments, in contrast, have δ98Mo  ? 0.1‰. The difference between the river water and sediment values implies that isotopic fractionation occurs within the river basin. The δ98Mo values for estuarine sediments are offset from values in the overlying water. Most samples deposited before 1925 have δ98Mo less than 0‰, similar to the Susquehanna sediments. Subsequently, there is an increase in the variability of δ98Mo, with values ranging up to + 0.8‰. The transition to increased variability coincides with the onset of authigenic Mo deposition, which was previously attributed to escalating summertime anoxia. Authigenic Mo concentrations correlate poorly with δ98Mo in core samples, suggesting that independent mechanisms influence the two parameters. Authigenic Mo concentrations may be controlled by shifting pore water H2S levels, while δ98Mo may be primarily affected by annual variations in Mn refluxing.  相似文献   

9.
δ18O values for 87 chert samples from the 3.4-b.y.-old Onverwacht Group, South Africa, range from +9.4 to +22.1‰. δ-values for cherts representing early silicified carbonates and evaporites, and possible primary precipitates range from +16 to +22‰ and are distinctly richer in18O than silicified volcaniclastic debris and cherts of problematical origin. The lower δ-values for the latter two chert types are caused by isotopic impurities such as sericite and feldspar, and/or late silicification at elevated temperature during burial. Cherts with δ-values below +16‰ are thus not likely to yield geochemical data relevant to earth surface conditions.Fine-grained chert is less than 0.7‰ depleted in18O relative to coexisting coarse drusy quartz. Because coarse quartz preserves its isotopic composition with time, the maximum amount of post-depositional lowering of the δ-values of cherts by long-term isotopic exchange with meteoric groundwaters does not exceed 0.7‰ in 3.4 b.y. In response to metamorphism the δ-values of Onverwacht cherts appear to remain unchanged or to have increased by as much as 4‰. Neither metamorphism nor long-term isotopic exchange with groundwaters can explain why Onverwacht cherts are depleted in18O relative to their Phanerozoic counterparts.Meteoric waters with a δ18O range of at least 3‰ appear to have been involved in Onverwacht chert diagenesis. δ-values for possible primary cherts or cherts representing silicified carbonates and evaporites are compatible with the depositional and diagenetic environments deduced from field and petrographic evidence. Onverwacht cherts appear to have formed with δ-values at least 8‰ lower than Phanerozoic cherts.The new Onverwacht data combined with all published oxygen isotope data for cherts suggest a secular trend similar to that initially suggested by Perry (1967) in which younger cherts are progressively enriched in18O. However, Precambrian cherts appear to be richer in18O than Perry's original samples and can be reasonably interpreted in terms of declining climatic temperatures from ~70°C at 3.4 b.y. to present-day values, as initially suggested by Knauth and Epstein (1976). This surface temperature history is compatible with existing geological, geochemical, and paleontological evidence.  相似文献   

10.
Previous studies on multiple sulfur isotopes (32S, 33S, and 34S) in sedimentary pyrite at the end-Permian suggested a shoaling of anoxic/sulfidic deep-water contributing to the extinction. This scenario is based on an assumption that the sedimentary sulfur cycle was largely controlled by benthos activity, though a stratigraphic correlation between the sulfur records and ichnofabrics of the sediments at the end-Permian has not yet been examined. We report the multiple sulfur isotopic composition of pyrite in the Permian–Triassic boundary interval at Chaotian, South China. Our data can be generally explained by a mixing of sulfur in sulfide from two different sources: one produced via sulfate reduction in an open system with respect to sulfate and the other produced in a closed system. In particular, the former with the substantially low δ34S (<−40 ‰) and high ∆33S (up to +0.100 ‰) values was likely produced via water-mass sulfate reduction or via sulfate reduction in oxic sediments with common burrows. The frequent occurrence of small pyrite framboids (mostly <5 μm in diameter) in the Lopingian (Late Permian) Dalong Formation of deep-water facies supports the enhanced water-mass sulfate reduction in an anoxic deep-water mass. The negative ∆33S values are observed only in the oxic limestones, and no substantial ∆33S change is observed across the extinction horizon despite of the disappearance of bioturbation. Our results are apparently inconsistent with the previous shoaling model. We expand the model and infer that, when the deep-water was sulfidic and its shoaling rate was high, a substantial amount of hydrogen sulfide (H2S) was supplied onto the shelf via the shoaling; that resulted in the positive ∆33S value of the bulk sediments. The observed ∆33S variation on a global scale suggests a substantial variation in H2S concentration and/or in upwelling rate of shoaling deep-waters during the Permian–Triassic transition.  相似文献   

11.
According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression, accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness (C1/C1–4) at the middle and northern parts of the depression and low one towards east and west sides and southern part. The carbon isotopes of methane and its homologues are relatively enriched in 13C, and the distributive range of δ 13C1, δ 13C2 and δ 13C3 is ?32‰–?36‰, ?22‰–?24‰ and ?20‰–?22‰, respectively. In general, the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers. The δ 13 \(C_{CO_2 } \) value is less than ?10‰ in the Kuqa depression, indicating its organogenic origin. The distributive range of 3He/4He ratio is within n × 10?8 and a decrease in 3He/4He ratio from north to south in the depression is observed. Based on the geochemical parameters of natural gas above, natural gas in the Kuqa depression is of characteristics of coal-type gas origin. The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type, multistages accumulation of natural gas under high-temperature and over-pressure conditions, and sufficiency and diffusion of natural gas.  相似文献   

12.
In complex hydrogeological environments the effective management of groundwater quality problems by pump‐and‐treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C‐, H‐, O‐, S‐stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (δ34S(SO4) ? ?1.6‰, δ18O(SO4) ? +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in‐mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.  相似文献   

13.
This paper reports the first results on δ18O and δ2H analysis of precipitations, cave drip waters, and groundwaters from sites in Mallorca (Balearic Islands, western Mediterranean), a key region for paleoclimate studies. Understanding the isotopic variability and the sources of moisture in modern climate systems is required to develop speleothem isotope‐based climate reconstructions. The stable isotopic composition of precipitation was analysed in samples collected between March 2012 and March 2013. The values are in the range reported by GNIP Palma station. Based on these results, the local meteoric water line (LMWL) δ2H = 7.9 (±0.3) δ18O + 10.8 (±2.5) was derived, with slightly lower slope than Global Meteoric Water Line. The results help tracking two main sources of air masses affecting the study sites: rain events with the highest δ18O values (> ?5‰) originate over the Mediterranean Sea, whereas the more depleted samples (< ?8‰) are sourced in the North Atlantic region. The back trajectory analysis and deuterium excess values, ranging from 0.4 to 18.4‰, further support our findings. To assess the isotopic variation across the island, water samples from eight caves were collected. The δ18O values range between ?6.9 and ?1.6‰. With one exception (Artà), the isotopic composition of waters in caves located along the coast (Drac, Vallgornera, Cala Varques, Tancada, and Son Sant Martí) indicates Mediterranean‐sourced moisture masses. By contrast, the drip water δ18O values for inland caves (Campanet, ses Rates Pinyades) or developed under a thick (>50 m) limestone cap (Artà) exhibit more negative values. A well‐homogenized aquifer supplied by rainwaters of both origins is clearly indicated by groundwater δ18O values, which show to be within 2.4‰ of the unweighted arithmetic mean of ?7.4‰. Although limited, the isotopic data presented here constitute the baseline for future studies using speleothem δ18O records for western Mediterranean paleoclimate reconstructions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The Sierra Gorda aquifer is one of the most extensive of southern Spain. The main groundwater discharge is produced at its northern boundary through several high‐flow springs. In this study, stable isotopes of dissolved sulfate (δ34S and δ18O) and groundwater chemistry were used to determine the origin of the sulfate and to characterize the groundwater flow. We sampled the main springs, as well as other minor outlets related to perched water tables, in order to determine the different sources of SO42? (e.g., dissolution of evaporites and atmospheric deposition). The substantial difference in the amount of dissolved SO42? between the springs located in its northwestern part (≈25 mg/L) and those elsewhere in the northern part (≈60 mg/L) suggests zones with separate groundwater flow systems. A third group of springs, far from the northeastern boundary of the permeable outcrops, shows higher SO42? content than the rest (≈125 mg/L). The isotopic range of sulfate (?0.3‰ to 14.82‰ V‐CTD) points to several sources, including dissolution of Triassic or Miocene evaporites, atmospheric deposition, and decomposition of organic material in the soil. Among these, the dissolution of Triassic gypsum—which overlies the saturated zone as a consequence of the folds and faults that deform the aquifer—is the main source of SO42? (range from 12.79‰ to 14.82‰ V‐CTD). This range is typical for Triassic gypsum. The higher karstification in the western sector, together with important differences in the saturated thickness between the western and eastern sectors, would also be due to the tectonic structure and could explain the difference in SO42? contents in the water. This singular arrangement may cause a higher residence time of groundwater in the eastern sector; thus, a higher contact time with Triassic evaporitic rocks is inferred. Accordingly, the stable isotopes of SO42? are found to be a valuable tool for identifying areas with different flow systems in the saturated zone of karstic aquifers, as well as for evaluating aspects such as the degree of karstification .  相似文献   

15.
In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea(SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analysis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L~(-1). The hydrocarbon δ~(13)C values, ranging from-69.4‰ to-72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results(~(-1)83‰ to~(-1)85‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO_2 reduction. By isotopic measurement, five light δ~(13)C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ~(13)C values being apparently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ~(13)C values of benthic Uvigerina peregrina are extremely depleted(as low as~(-1)5.85‰ PDB), while those of planktonic Globigerinoides ruber reach-5.68‰ PDB. Scanning electron micrograph(SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ~(13)C composition of benthic foraminifera. This means that the anomalous δ~(13)C depletions are predominantly attributed to the overprinting of secondary carbonates derived from the anaerobic oxidation of methane(AOM). Furthermore, the negative δ~(13)C anomalies, coupled with the positive δ18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.  相似文献   

16.
Nitrogen and noble gases were measured in samples of a glass inclusion and the surrounding basaltic matrix from the antarctic shergottite EETA 79001. A nitrogen component trapped in the glass, but not present in the matrix, has a δ15N value at least as high as +190‰. Ratios of40Ar/14N and15N/14N in the glass are consistent with dilution of a martian atmospheric component (δ15N = 620 ± 160‰,40Ar/14N= 0.33 ± 0.03) by either terrestrial atmosphere adsorbed on the samples or by indigenous nitrogen from the minerals of the rock. Trapped noble gases in the glass reproduce, within error, the elemental and isotopic compositions measured in Mars' atmosphere by Viking, and are in general agreement with previous measurements except for much lower abundances of neutron-generated krypton and xenon isotopes. The most reasonable explanation at the present time for the noble gas pattern and the isotopically heavy nitrogen is that a sample of martian atmosphere has been trapped in the EETA 79001 glass, and that this meteorite, and thus the shergottites and probably the nakhlites and chassignites as well, originated on Mars.Nitrogen in the non-glassy matrix of EETA 79001 amounts to less than 0.5 ppm and has a spallation-corrected δ15N value in the range 0 to ?20‰; it may reflect indigenous nitrogen in the basalt or a mixture of indigenous and adsorbed terrestrial nitrogen. Spallogenic noble gases yield single-stage exposure ages between 400,000 and 900,000 years, depending on irradiation geometry. Trapped argon may have an unusually low36Ar/38Ar ratio. Trapped krypton, except for a small excess at80Kr, is smoothly mass-fractionated with respect to either terrestrial or chondritic Kr. The trapped xenon composition is consistent with addition of neutron-capture, radiogenic and fissiogenic isotopes to a base composition resembling terrestrial atmospheric Xe. The elemental84Kr/132Xe ratio of 25 is close to the terrestrial value and very different from the chondritic ratio.  相似文献   

17.
Hydrogen isotopic compositions in seven carbonaceous chondrites lie in the range ?70 to +771‰ relative to SMOW. These values decrease, to a range from ?145 to +219‰, after low-temperature oxidation in an oxygen plasma. Deuterium enrichment is therefore concentrated in the organic matter, the hydrous silicates probably lying close to the terrestrial range for such material. Calculated values for δD of the organic fraction are +450 ‰ for Orgueil and Ivuna and up to +1600‰ for Renazzo. These enrichments, at least for Orgueil and Ivuna, suggest equilibration with protosolar hydrogen at very low temperatures. Assuming a value of 2.5 × 10?5 for the protosolar D/H ratio, nominal equilibration temperatures of 230°K for silicates and 180°K for organic matter may be derived.  相似文献   

18.
Hydrocarbon compositions and δ13C values for methane of fourteen natural seep gases and four underwater vents in the northwestern Gulf of Mexico are reported. The C1/(C2 + C3) ratios of the seep gas samples ranged from 68 to greater than 1000, whereas δPDB13C values varied from ?39.9 to ?65.5‰. Compositions suggest that eleven of the natural gas seeps are produced by microbial degradation whereas the remaining three have a significant thermocatalytically produced component. Contradictions in the inferences drawn from molecular and isotopic compositions make strict interpretation of the origins of a few of the samples impossible.  相似文献   

19.
An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (∼1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative δ13C values of these carbonates (>−43.5‰ PDB) indicate methane as major carbon source; δ18O values between 4.04 and 5.88‰ PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20?680 to >49?080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO42- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (δ34S: 21.0-38.6‰ CDT; δ18O: 9.0-17.6‰ SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with ‘normal’ seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49?000 yr.  相似文献   

20.
M. Z. Iqbal 《水文研究》2008,22(23):4609-4619
Oxygen and deuterium isotopes in precipitation were analysed to define local isotopic trends in Iowa, US. The area is far inland from an oceanic source and the observed averages of δ18O and δ D are ? 6·43‰ and ? 41·35‰ for Ames, ? 7·53‰ and ? 51·33‰ for Cedar Falls, and ? 6·01‰ and ? 38·19‰ for Iowa City, respectively. Although these data generally follow global trends, they are different when compared to a semi‐arid mid‐continental location in North Platt, Nebraska. The local meteoric water lines of Iowa are δ D = 7·68 δ18O + 8·0 for Ames, δ D = 7·62 δ18O + 6·07 for Cedar Falls, and δ D = 7·78 δ18O + 8·61 for Iowa City. The current Iowa study compares well with a study conducted in Ames, Iowa, 10 years earlier. The differences between Iowa and Nebraska studies are attributed to a variable climate across the northern Great Plains ranging from sub‐humid in the east to semi‐arid in the west. Iowa being further east in the region is more strongly influenced by a moist sub‐humid to humid climate fed by the tropical air stream from the Gulf of Mexico. The average d‐excess values are 10·06‰ for Ames, 8·92‰ for Cedar Falls and 9·92‰ for Iowa City. Eighty seven percent of the samples are within the global d‐excess range of 0‰ and 20‰. The results are similar to previous studies, including those by National Atmospheric Deposition Programs and International Atomic Energy Agency. It appears that the impact of recycled water or secondary evaporation on δ18O values of area precipitation is minimal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号