首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The existence of strong random noise in surface microseismic data may decrease the utility of these data. Non‐subsampled shearlet transform can effectively suppress noise by properly setting a threshold to the non‐subsampled shearlet transform coefficients. However, when the signal‐to‐noise ratio of data is low, the coefficients related to the noise are very close to the coefficients associated with signals in the non‐subsampled shearlet transform domain that the coefficients related to the noise will be retained and be treated as signals. Therefore, we need to minimise the overlapping coefficients before thresholding. In this paper, a singular value decomposition algorithm is introduced to the non‐subsampled shearlet transform coefficients, and low‐rank approximation reconstructs each non‐subsampled shearlet transform coefficient matrix in the singular value decomposition domain. The non‐subsampled shearlet transform coefficients of signals have bigger singular values than those of the random noise, which implies that the non‐subsampled shearlet transform coefficients can be well estimated by taking only a few largest singular values. Therefore, those properties of singular value decomposition may significantly help minimise overlapping of noise and signals coefficients in the non‐subsampled shearlet transform domain. Finally, the denoised microseismic data are obtained easily by giving a simple threshold to the reconstructed coefficient matrix. The performance of the proposed method is evaluated on both synthetic and field microseismic data. The experimental results illustrate that the proposed method can eliminate random noise and preserve signals of interest more effectively.  相似文献   

2.
李月  邵丹  张超  马海涛 《地球物理学报》2018,61(12):4997-5006
地面微地震监测采集到的微地震信号通常能量微弱,信噪比低,如何提高微震数据的信噪比是数据处理的难题.Shearlet变换是一种新型的多尺度几何分析方法,具有敏感的方向性和较强的稀疏表示特性,能起到很好的随机噪声压制效果.由于地面微震数据的有效信号大多被淹没在噪声中,基于传统阈值的Shearlet变换(the traditional threshold-based Shearlet transform TST)只考虑到尺度或方向的阈值,在去噪过程中会过度扼制有效信号系数,造成有效信号能量损失.因而,本文建立Context模型,得到基于Context模型的Shearlet变换(the Context-model-based Shearlet transform CMST)方法,改进传统Shearlet阈值方法的不足.我们通过所建立的Context模型将能量相近的各方向系数划分为同一组,并分组估计阈值,分别处理各部分系数,达到微弱同相轴有效恢复的目的.通过TST及CMST的模拟实验与实际地面微震记录处理结果对比可知,本文方法在低信噪比条件下比对比方法更加有效地恢复地面微震数据的微弱信号,随机噪声压制效果明显,在-10 dB条件下,提升信噪比18.3741 dB.  相似文献   

3.
Noise suppression or signal‐to‐noise ratio enhancement is often desired for better processing results from a microseismic dataset. In this paper, a polarization–linearity and time–frequency‐thresholding‐based approach is used for denoising waveforms. A polarization–linearity filter is initially applied to preserve the signal intervals and suppress the noise amplitudes. This is followed by time–frequency thresholding for further signal‐to‐noise ratio enhancement in the S transform domain. The parameterisation for both polarization filter and time–frequency thresholding is also discussed. Finally, real microseismic data examples are shown to demonstrate the improvements in processing results when denoised waveforms are considered in the workflow. The results indicate that current denoising approach effectively suppresses the background noise and preserves the vector fidelity of signal waveform. Consequently, the quality of event detection, arrival‐time picking, and hypocenter location improves.  相似文献   

4.
Improving the seismic time–frequency resolution is a crucial step for identifying thin reservoirs. In this paper, we propose a new high-precision time–frequency analysis algorithm, synchroextracting generalized S-transform, which exhibits superior performance at characterizing reservoirs and detecting hydrocarbons. This method first calculates time–frequency spectra using generalized S-transform; then, it squeezes all but the most smeared time–frequency coefficients into the instantaneous frequency trajectory and finally obtains highly accurate and energy-concentrated time–frequency spectra. We precisely deduce the mathematical formula of the synchroextracting generalized S-transform. Synthetic signal examples testify that this method can correctly decompose a signal and provide a better time–frequency representation. The results of a synthetic seismic signal and real seismic data demonstrate that this method can identify some reservoirs with thincknesses smaller than a quarter wavelength and can be successfully applied for hydrocarbon detection. In addition, examples of synthetic signals with different levels of Gaussian white noise show that this method can achieve better results under noisy conditions. Hence, the synchroextracting generalized S-transform has great application prospects and merits in seismic signal processing and interpretation.  相似文献   

5.
宽频带地震观测数据中有效信号和干扰噪声经常发生混频效应,常规的频率域滤波方法很难将二者分离.地震波信号属于时变非平稳信号,时频分析方法能够同时得到地震波信号随着时间和频率变化的振幅和相位特征,S变换是其中较为高效的时频分析工具之一.本文以S变换为例,提出了基于相位叠加的时频域相位滤波方法.与传统叠加方法相比,相位叠加方法对强振幅不敏感,对波形一致性相当敏感,更加利于有效弱信号信息的检测.时频域相位滤波方法滤除与有效信号不相干的背景噪声,保留了相位一致的有效信号成分,显著提高了信噪比.运用理论合成的远震接收函数数据和实际的宽频带地震观测数据检验结果显示该方法较传统的带通滤波方法相比,即使在信噪较低且混频严重条件下,时频域相位滤波方法的滤波效果依然很明显,有助于识别能量较弱的有效信号.  相似文献   

6.
Most of the microseismic signals have low signal-to-noise ratio (SNR) due to the strong background noise, which makes it difficult to locate the first arrival time. Both accuracy and stability of conventional methods are poor in this situation. To overcome this problem, here we proposed a new method based on the adaptive Morlet wavelet and principal component analysis process in wavelet coefficients matrix. The three components of microseismic signal make it possible to extract the features in wavelet coefficients domain. Then the reconstructed signal from weighted features presents an obvious first arrival. Tests on synthetic signals and real data provide a solid evidence for its feasibility in low SNR microseismic signal.  相似文献   

7.
Seismic waves propagating through viscoelastic media experience stratigraphic absorption and attenuation effects, which directly affect the imaging resolution in seismic exploration. Without stratigraphic absorption, the ratio of deep reflection energy to shallow reflection energy (attenuation ratio) is invariable at different frequencies. If a seismogram is decomposed into different frequency bands, these signals will show similar time–energy distributions. Therefore, the attenuation ratios should be similar across different frequency bands, except for frequency-variable weights. Nevertheless, the frequency-variable weights for different frequency bands can be obtained by benchmarking against the time–energy distributions of low-frequency information because the loss of low-frequency information is relatively insignificant. In this light, we obtained frequency-variable weights for different frequencies and established a stratal absorption compensation (SAC) model. The anisotropic basis of the shearlet enables nearly optimal representation of curved-shape seismic signals, and shearlets at different scales can represent signals for different frequency bands. Then, we combined the SAC model with the shearlet transform and established the new compensation method. As the signal and noise have different distributions in the shearlet domain, we selectively compensated the signals using a thresholding algorithm. Hence, it was possible to avoid noise enhancement. This is the prominent advantage of the proposed method over other compensation methods.  相似文献   

8.
A method to identify the P-arrival of microseismic signals is proposed in this work, based on the algorithm of intrinsic timescale decomposition (ITD). Using the results of ITD decomposition of observed data, information of instantaneous amplitude and frequency can be determined. The improved ratio function of short-time average over long-time average and the information of instantaneous frequency are applied to the time-frequency-energy denoised signal for picking the P-arrival of the microseismic signal. We compared the proposed method with the wavelet transform method based on the denoised signal resulting from the best basis wavelet packet transform and the single-scale reconstruction of the wavelet transform. The comparison results showed that the new method is more effective and reliable for identifying P-arrivals of microseismic signals.  相似文献   

9.
—?Microseismic monitoring systems are generally installed in areas of induced seismicity caused by human activity. Induced seismicity results from changes in the state of stress which may occur as a result of excavation within the rock mass in mining (i.e., rockbursts), and changes in hydrostatic pressures and rock temperatures (e.g., during fluid injection or extraction) in oil exploitation, dam construction or fluid disposal. Microseismic monitoring systems determine event locations and important source parameters such as attenuation, seismic moment, source radius, static stress drop, peak particle velocity and seismic energy. An essential part of the operation of a microseismic monitoring system is the reliable detection of microseismic events. In the absence of reliable, automated picking techniques, operators rely upon manual picking. This is time-consuming, costly and, in the presence of background noise, very prone to error. The techniques described in this paper not only permit the reliable identification of events in cluttered signal environments they have also enabled the authors to develop reliable automated event picking procedures. This opens the way to use microseismic monitoring as a cost-effective production/operations procedure. It has been the experience of the authors that in certain noisy environments, the seismic monitoring system may trigger on and subsequently acquire substantial quantities of erroneous data, due to the high energy content of the ambient noise. Digital filtering techniques need to be applied on the microseismic data so that the ambient noise is removed and event detection simplified. The monitoring of seismic acoustic emissions is a continuous, real-time process and it is desirable to implement digital filters which can also be designed in the time domain and in real-time such as the Kalman Filter. This paper presents a real-time Kalman Filter which removes the statistically describable background noise from the recorded seismic traces.  相似文献   

10.
We present a novel denoising scheme via Radon transform-based adaptive vector directional median filters named adaptive directional vector median filter (AD-VMF) to suppress noise for microseismic downhole dataset. AD-VMF contains three major steps for microseismic downhole data processing: (i) applying Radon transform on the microseismic data to obtain the parameters of the waves, (ii) performing S-transform to determine the parameters for filters, and (iii) applying the parameters for vector median filter (VMF) to denoise the data. The steps (i) and (ii) can realize the automatic direction detection. The proposed algorithm is tested with synthetic and field datasets that were recorded with a vertical array of receivers. The P-wave and S-wave direct arrivals are properly denoised for poor signal-to-noise ratio (SNR) records. In the simulation case, we also evaluate the performance with mean square error (MSE) in terms of signal-to-noise ratio (SNR). The result shows that the distortion of the proposed method is very low; the SNR is even less than 0 dB.  相似文献   

11.
高频噪声压制是高分辨率地震数据处理中提高信噪比的关键性问题.本文针对f-x(频率-空间)反褶积空间预测滤波器无法处理非平稳、非线性信号的缺点,提出了一种基于高通滤波的频率-空间域经验模态分解(Empirical Mode Decomposition in the frequency-space domain,f-xEMD)压制地震剖面中高频噪声的方法.该方法采用全域高通滤波从原始数据中分离出含有部分有效信号的高频数据,将其变换到f-x域,然后在滑动的短窗口内提取每一个频率的空变数据序列进行EMD分解得到高频复本征模态函数(Intrinsic Mode Function,IMF)IMF1,将所有频率的IMF1序列反Fourier变换到时间域得到噪声剖面,将其与原始数据相减,达到高频噪声压制的目的.该方法可克服传统EMD分解方法中的模态混叠现象,保护陡倾角反射同相轴;压制后的噪声剖面中不包含有效信号能量,地震剖面的信噪比得到了提高.模拟数据和实际数据处理结果充分证明了该方法的有效性.  相似文献   

12.
The fractional S-transform (FRST) has good time–frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time–fractional-frequency domain. We used field seismic and well data to verify the proposed method.  相似文献   

13.
Random noise attenuation, preserving the events and weak features by improving signal‐to‐noise ratio and resolution of seismic data are the most important issues in geophysics. To achieve this objective, we proposed a novel seismic random noise attenuation method by building a compound algorithm. The proposed method combines sparsity prior regularization based on shearlet transform and anisotropic variational regularization. The anisotropic variational regularization which is based on the linear combination of weighted anisotropic total variation and anisotropic second‐order total variation attenuates noises while preserving the events of seismic data and it effectively avoids the fine‐scale artefacts due to shearlets from the restored seismic data. The proposed method is formulated as a convex optimization problem and the split Bregman iteration is applied to solve the optimization problem. To verify the effectiveness of the proposed method, we test it on several synthetic seismic datasets and real datasets. Compared with three methods (the linear combination of weighted anisotropic total variation and anisotropic second‐order total variation, shearlets and shearlet‐based weighted anisotropic total variation), the numerical experiments indicate that the proposed method attenuates random noises while alleviating artefact and preserving events and features of seismic data. The obtained result also confirms that the proposed method improves the signal‐to‐noise ratio.  相似文献   

14.
微地震事件初至拾取是井下微地震监测数据处理的关键步骤之一.初至误差的存在会使微地震震源定位结果产生较大偏差,进而影响后续的压裂裂缝解释.通常初至拾取过程对所有的微地震事件选择相同的特征函数并采用一致的拾取参数进行统一处理,然而当事件的能量、震源机制、传播路径以及背景噪声等存在明显差异时,所得初至拾取结果差别显著.为了提高微地震事件初至拾取标准一致性,本文提出基于波形相似特征的初至拾取及全局校正方法.该方法首先利用互相关函数对每个事件内的各道记录进行时差校正,得到初始初至信息并形成叠加道,再对所有事件的叠加道进行全局互相关得到事件间初至相对校正量,最终初至结果可以通过各个事件的初始初至信息与其相对校正量相加得到.方法将所有微地震事件初至结果作为一个整体处理,从而能够克服常规方法初至拾取标准一致性差的缺陷.实际资料处理结果表明,相比于常规方法,该方法可以有效提高事件初至拾取和定位结果的一致性.  相似文献   

15.
噪声衰减是探地雷达信号处理中的关键问题之一。当探测目标埋藏深度比较浅时,其反射信号与直耦信号和地面回波信号相互重叠,直接影响目标反射波到达时刻的检测及目标的正确定位。针对这个问题,本文提出了一种基于Curvelet变换的噪声衰减方法。通过对理论数值模拟数据和实测数据的处理,以及与平均消去法和二维连续小波该方法处理结果的对比,验证了该方法的可行性和有效性。处理结果显示,该方法不仅可以去除背景噪声、同时可以衰减倾斜相关的相干干扰和数据中的随机噪声。与二维连续小波变换方法相比有更高的计算效率。  相似文献   

16.
传统CSEM一般只提取主频信号,或以谐波与主频的振幅比为依据提取部分低阶谐波信号,但缺乏判断标准,实际操作中存在很大的不确定性.本文基于小波变换和希尔伯特解析包络提出一种新的CSEM信号噪声评价方法,首先在时间域中基于混合基快速傅里叶变换获得原始信号准确功率谱;其次在频率域中根据CSEM频率位置相邻频率幅值进行频谱预处理,基于离散小波变换将预处理后的频谱分成低频部分和高频部分,基于希尔伯特变换识别高频部分的上包络线,并与低频部分重构得到频谱的整体上包络线;最后根据包络线与对应CSEM频率振幅的比值估计噪声的影响幅度,根据阈值筛选出高信噪比的主频和谐波信号.本方法不需增加野外工作量即可提取大量的频率信号,特别是高阶谐波信号,实现频率加密,提高CSEM的纵向分辨能力和能源利用率.  相似文献   

17.
李稳  刘伊克  刘保金 《地球物理学报》2016,59(10):3869-3882
井下微震监测获得的地震记录往往包含大量的噪声,记录信噪比很低.有效地震信号的识别与提取是进行后续地震定位等工作之前需要优先解决的问题.经过研究发现,井下水压裂微地震信号具有稀疏分布的特征,而井下环境噪声则具有更多的Gaussian分布特征.为此,本文提出将图像处理领域适宜于稀疏分布信号降噪处理的稀疏码收缩方法应用于井下微震监测数据处理.为解决需要利用与待处理数据中有效信号成分具有相似分布特征的无噪信号序列估算正交基以及计算效率等问题,将原方法与小波变换理论相结合.即通过优选小波基函数作为正交基进行小波变换将信号分解为不同级的小波系数,利用稀疏码收缩方法中对稀疏编码施加的非线性收缩方式作为阈值准则对小波系数进行改造.通过多方面的数值实验证明了该方法在处理地震子波及井下微地震信号方面准确可靠.含噪记录经过处理后有效地震信号的到时、波形、时频谱特征等均能得到良好的识别和恢复.并且该方法具有很强的抗噪能力,当信噪比低至-20~-30db时,仍然能够发挥作用.在处理大量实际井下微震监测数据的过程中,面对多种复杂情况,本方法展现出了计算效率高、计算结果可靠、应用简单等优势,证明了其本身具有实际应用价值,值得进一步的研究和推广.  相似文献   

18.
广义S变换及其在大地电磁测深数据处理中的应用   总被引:1,自引:0,他引:1  
广义S变换是一种优于短时窗傅立叶变换和小波变换的时频分析方法,利用广义S变换能够准确定位大地电磁资料中存在的噪声,通过定义时频窗对噪声进行滤除,从而明显提高阻抗视电阻率与相位的估算质量.本文基于S变换和大地电磁测深资料处理的基本原理,研究了基于广义S变换的大地电磁测深资料的处理流程和方法.对理论模拟信号及实测大地电磁场时间序列数据的处理,证实了方法的有效性.  相似文献   

19.
Automatic feature detection from seismic data is a demanding task in today's interpretation workstations. Channels are among important stratigraphic features in seismic data both due to their reservoir capability or drilling hazard potential. Shearlet transform as a multi‐scale and multi‐directional transformation is capable of detecting anisotropic singularities in two and higher dimensional data. Channels occur as edges in seismic data, which can be detected based on maximizing the shearlet coefficients through all sub‐volumes at the finest scale of decomposition. The detected edges may require further refinement through the application of a thinning methodology. In this study, a three‐dimensional, pyramid‐adapted, compactly supported shearlet transform was applied to synthetic and real channelised, three‐dimensional post‐stack seismic data in order to decompose the data into different scales and directions for the purpose of channel boundary detection. In order to be able to compare the edge detection results based on three‐dimensional shearlet transform with some famous gradient‐based edge detectors, such as Sobel and Canny, a thresholding scheme is necessary. In both synthetic and real data examples, the three‐dimensional shearlet edge detection algorithm outperformed Sobel and Canny operators even in the presence of Gaussian random noise.  相似文献   

20.
深地震反射原始单炮数据是非平稳的弱能量反射信号,信噪比较低.如何提高信噪比一直是深地震反射数据前处理中的一大难题.S变换是一种适用于分析非平稳信号的时频变换方法.同其他分析时变信号的方法相比,S变换的基本小波不必满足小波在时间域均值为零的容许性条件,它的时频分辨率与分析信号的频率有关,且其在时间域的积分可以得到傅里叶频谱,其反变换也简单.因此,S变换容易表示深地震反射信号复杂的时频特性.本文在S变换的基础上,利用软阈值滤波方法对深地震反射数据进行处理,实验结果表明,该方法有效地提高了信噪比,压制了有效频带范围内的混频干扰,突出了弱反射信号,使得波组信息更加丰富,有利于连续追踪有效反射波组和识别薄地层,特别是提高了深部Moho界面反射层位的分辨率,为深地震反射剖面后续处理和准确解释奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号