首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《应用地球物理》2006,3(3):141-147
3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical data based on the quasi-analytical approximation (QA) and re-weighted regularized conjugate gradient method (RRCG) algorithms using Visual Fortran 6.5. Application of the QA approximation to forward modeling and Frechet derivative computations speeds up the calculation dramatically. The trial calculation for synthetic data of theoretical model showed that the program is fast and highly precise.  相似文献   

2.
Bai  Wenguang  Zhang  Peng  Zhang  Wenjian  Li  Jun  Ma  Gang  Qi  Chengli  Liu  Hui 《中国科学:地球科学(英文版)》2020,63(9):1353-1365
Due to the polarization effects of the Earth's surface reflection and atmospheric particles' scattering, high-precision retrieval of atmospheric parameters from near-infrared satellite data requires accurate vector atmospheric radiative transfer simulations. This paper presents a near-infrared vector radiative transfer model based on the doubling and adding method. This new model utilizes approximate calculations of the atmospheric transmittance, reflection, and solar scattering radiance for a finitely thin atmospheric layer. To verify its accuracy, the results for four typical scenarios(single molecular layer with Rayleigh scattering, single aerosol layer scattering, multi-layer Rayleigh scattering, and true atmospheric with multi-layer molecular absorption, Rayleigh and aerosol scattering) were compared with benchmarks from a well-known model. The comparison revealed an excellent agreement between the results and the reference data, with accuracy within a few thousandths. Besides, to fulfill the retrieval algorithm, a numerical differentiation-based Jacobian calculation method is developed for the atmospheric and surface parameters. This is coupled with the adding and doubling process for the radiative transfer calculation. The Jacobian matrix produced by the new algorithm is evaluated by comparison with that from the perturbation method. The relative Jacobian matrix deviations between the two methods are within a few thousandths for carbon dioxide and less than 1.0×10~(-3)% for aerosol optical depth. The two methods are consistent for surface albedo, with a deviation below 2.03×10~(-4)%. All validation results suggest that the accuracy of the proposed radiative transfer model is suitable for inversion applications. This model exhibits the potential for simulating near-infrared measurements of greenhouse gas monitoring instruments.  相似文献   

3.
An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.  相似文献   

4.
Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.  相似文献   

5.
2.5维井间电磁反演在中国东部孤岛油田的应用   总被引:3,自引:1,他引:2  
In this study, we present a practical technique of transforming cross-hole EM data into the inter-well resistivity distribution. The a priori information constraint is incorporated into an iterative regularized inversion procedure and a variable roughness is added into the inversion process. Finite element approximation based on a two and a half-dimensional (2.5D) model has been developed for the forward problem and the "pseudo-forward" problem needed for constructing the sensitivity matrix and synthetic data set. The regularized least-squares inversion scheme, constrained with the a priori information obtained from well logs, was adopted to reconstruct the inter-well resistivity profile from two synthetic electromagnetic data sets and field data acquired in the Gudao Oil Field, East China. The partial derivatives of the sensitivity matrix were computed by the adjoint equation based on the reciprocity principle. Inversion results of the synthetic and field data examples suggest that our method is robust and stable in the presence of random noise in the field data and can be used for cross-hole EM field data interpretation.  相似文献   

6.
To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.  相似文献   

7.
Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.  相似文献   

8.
In order to minimize uncertainty of the inversed parameters to the largest extent by making full use of the limited information in remote sensing data, it is necessary to understand what the information flow in quantitative remote sensing model inversion is, thus control the information flow. Aiming at this, the paper takes the linear kernel-driven model inversion as an example. At first, the information flow in different inversion methods is calculated and analyzed, then the effect of information flow controlled by multi-stage inversion strategy is studied, finally, an information matrix based on USM is defined to control information flow in inversion. It shows that using Shannon entropy decrease of the inversed parameters can express information flow more properly. Changing the weight of a priori knowledge in inversion or fixing parameters and partitioning datasets in multi-stage inversion strategy can control information flow. In regularization inversion of remote sensing, information matrix based on  相似文献   

9.
We present a 3D approach to numerical modeling of the borehole-surface electromagnetic (BSEM) method. The 3D electromagnetic response created by a vertical line current source in a layered medium is modeled using the 3D integral equation method. The modeling results are consistent with analytical solutions. 3D Born approximation inversion of BSEM data is also conducted for reservoir delineation. The inversion method is verified by a synthetic reservoir model.  相似文献   

10.
The waveform inversion method is applied—using synthetic ocean-bottom seismometer(OBS) data—to study oceanic crust structure. A niching genetic algorithm(NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented.The NGA method works well for various observation systems, such as those with irregular and sparse distribution of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complexity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method,its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situations; further studies are required to investigate this issue.  相似文献   

11.
可控源音频大地电磁三维共轭梯度反演研究   总被引:9,自引:5,他引:4       下载免费PDF全文
可控源音频大地电磁法在资源勘探等领域中发挥着重要的作用.我们把有限差分数值模拟方法用于可控源音频大地电磁三维正演,结合正则化反演方案和共轭梯度反演的思路,将反演中的雅可比矩阵计算问题转为求解两次"拟正演"问题,得到模型参数的更新步长,形成反演迭代,实现了可控源音频大地电磁三维共轭梯度反演算法.该反演算法可用于对有限长度电偶源激发下采集到的可控源音频大地电磁全区(近区、过渡区和远区)视电阻率和相位资料进行三维反演定量解释,获得地下三维模型的电阻率结构.理论模型合成数据的反演算例验证了所实现的可控源音频大地电磁三维共轭梯度反演算法的有效性和稳定性.  相似文献   

12.
基于有限差分正演的带地形三维大地电磁反演方法   总被引:4,自引:4,他引:0       下载免费PDF全文
本研究实现了一套基于有限差分(FD)方法的大地电磁测深数据带地形三维反演算法及代码.其中,在大地电磁场正演数值模拟方面,开发了起伏地形条件下基于交错网格剖分、有限差分方法的大地电磁测深三维正演代码;在满足平面波场假设的前提下,使用长方体网格剖分模拟三维起伏地形,实现了带地形三维正演计算;并设计理论模型进行试算,经试算结果与前人的有限元法计算结果对比,验证了所研发的带地形三维正演计算的正确性与可靠性.在反演方面,本研究基于非线性共轭梯度方法编写了大地电磁测深带地形三维反演代码,试验了不同的共轭梯度搜索因子β,避免了目标函数对海森矩阵(参数二次导数矩阵)的显式计算和存储,初步实现了大地电磁资料的带地形三维反演.最后,对一系列理论模型进行正演计算,利用其生成的合成数据模拟实测数据进行反演,并与现有的不带地形大地电磁测深三维反演结果比较,检验了所研发的带地形三维反演计算的可靠性与稳定性.  相似文献   

13.
倾子资料三维共轭梯度反演研究   总被引:4,自引:2,他引:2       下载免费PDF全文
在对倾子响应和共轭梯度算法深入分析的基础上,我们实现了倾子资料三维共轭梯度反演算法.基于倾子资料的三维共轭梯度反演研究,探讨了利用倾子资料进行三维反演定量解释的方法.通过对理论模型合成数据 进行反演试算,验证了所实现的倾子资料三维共轭梯度反演算法的有效性和稳定性.该反演算法可用于对大地电磁测深和地磁测深(地震地磁台站进...  相似文献   

14.
大地电磁全信息资料三维共轭梯度反演研究(英文)   总被引:7,自引:2,他引:5  
在对张量阻抗数据、倾子数据和共轭梯度算法深入分析的基础上,我们实现了大地电磁全信息资料三维共轭梯度反演算法。基于全信息资料的三维共轭梯度反演研究,探讨了同时利用五个电磁场分量整理得到的大地电磁资料进行三维反演定量解释的方法以及全信息数据在三维反演中的作用。理论模型合成数据的反演结果表明,在三维反演中使用张量阻抗和倾子数据结合的全信息数据的反演结果优于只使用张量阻抗数据(或只使用倾子数据)的反演结果,提高了反演结果的分辨率和可信度。合成数据的反演算例也验证了所实现的大地电磁全信息资料三维共轭梯度反演算法的正确性和稳定性。  相似文献   

15.
An important stage in two-dimensional magnetotelluric modelling is the calculation of the Earth's response functions for an assumed conductivity model and the calculation of the associated Jacobian relating those response functions to the model parameters. The efficiency of the calculation of the Jacobian will affect the efficiency of the inversion modelling. Rodi (1976) produced all the Jacobian elements by inverting a single matrix and using an approximate first-order algorithm. Since only one inverse matrix required calculation the procedure speeded up the inversion. An iterative scheme to improve the approximation to the Jacobian information is presented in this paper. While this scheme takes a little longer than Rodi's algorithm, it enables a more accurate determination of the Jacobian information. It is found that the Jacobian elements can be produced in 10% of the time required to calculate an inverse matrix or to calculate a 2D starting model. A modification of the algorithm can further be used to improve the accuracy of the original inverse matrix calculated in a 2D finite difference program and hence the solution this program produces. The convergence of the iteration scheme is found to be related both to the originally calculated inverse matrix and to the change in the newly formed matrix arising from perturbation of the model parameter. A ridge regression inverse algorithm is used in conjunction with the iterative scheme for forward modelling described in this paper to produce a 2D conductivity section from field data.  相似文献   

16.
We present preconditioned non‐linear conjugate gradient algorithms as alternatives to the Gauss‐Newton method for frequency domain full‐waveform seismic inversion. We designed two preconditioning operators. For the first preconditioner, we introduce the inverse of an approximate sparse Hessian matrix. The approximate Hessian matrix, which is highly sparse, is constructed by judiciously truncating the Gauss‐Newton Hessian matrix based on examining the auto‐correlation and cross‐correlation of the Jacobian matrix. As the second preconditioner, we employ the approximation of the inverse of the Gauss‐Newton Hessian matrix. This preconditioner is constructed by terminating the iteration process of the conjugate gradient least‐squares method, which is used for inverting the Hessian matrix before it converges. In our preconditioned non‐linear conjugate gradient algorithms, the step‐length along the search direction, which is a crucial factor for the convergence, is carefully chosen to maximize the reduction of the cost function after each iteration. The numerical simulation results show that by including a very limited number of non‐zero elements in the approximate Hessian, the first preconditioned non‐linear conjugate gradient algorithm is able to yield comparable inversion results to the Gauss‐Newton method while maintaining the efficiency of the un‐preconditioned non‐linear conjugate gradient method. The only extra cost is the computation of the inverse of the approximate sparse Hessian matrix, which is less expensive than the computation of a forward simulation of one source at one frequency of operation. The second preconditioned non‐linear conjugate gradient algorithm also significantly saves the computational expense in comparison with the Gauss‐Newton method while maintaining the Gauss‐Newton reconstruction quality. However, this second preconditioned non‐linear conjugate gradient algorithm is more expensive than the first one.  相似文献   

17.
I investigated the two‐dimensional magnetotelluric data inversion algorithms in studying two significant aspects within a linearized inversion approach. The first one is the method of minimization and second one is the type of stabilizing functional used in parametric functionals. The results of two well‐known inversion algorithms, namely conjugate gradient and the least‐squares solution with singular value decomposition, were compared in terms of accuracy and CPU time. In addition, magnetotelluric data inversion with various stabilizers, such as L2‐norm, smoothing, minimum support, minimum gradient support and first‐order minimum entropy, were examined. A new inversion algorithm named least‐squares solution with singular value decomposition and conjugate gradient is suggested in seeing the outcomes of the comparisons carried out on least‐squares solutions with singular value decomposition and conjugate gradient algorithms subject to a variety of stabilizers. Inversion results of synthetic data showed that the newly suggested algorithm yields better results than those of the individual implementations of conjugate gradient and least‐squares solution with singular value decomposition algorithms. The suggested algorithm and the above‐mentioned algorithms inversion results for the field data collected along a line crossing the North Anatolian Fault zone were also compared each other and results are discussed.  相似文献   

18.
大地电磁三维数据空间反演并行算法研究   总被引:6,自引:4,他引:2  
目前大地电磁三维反演实际应用的主要问题是计算效率低.在对大地电磁三维数据空间反演算法进行深入分析的基础上,本文提出了基于频点和矩阵划分的大粒度并行反演方案和具体实现步骤,并在曙光TC5000A高性能计算平台上实现了基于MPI的大地电磁三维数据空间反演并行算法.该算法实现了包括三维正演、灵敏度矩阵、叉积矩阵以及模型改正量的并行执行,不仅计算效率高,而且每个节点机上灵敏度矩阵的存储空间只需原来微机上的2/N(N是参加并行计算的节点机个数),大大地减少了内存开销.通过两个理论模型合成的数据对实现的三维数据空间反演并行算法进行试算,对比分析了多个节点机下程序的执行效率.测试结果表明,所实现的三维数据空间反演并行算法是可行的、高效的,与单机相比,不仅可以提高运行速度,缩短计算时间,而且还可以扩大计算规模,极大地推动了大地电磁三维反演的实用化.  相似文献   

19.
Markov chain Monte Carlo algorithms are commonly employed for accurate uncertainty appraisals in non-linear inverse problems. The downside of these algorithms is the considerable number of samples needed to achieve reliable posterior estimations, especially in high-dimensional model spaces. To overcome this issue, the Hamiltonian Monte Carlo algorithm has recently been introduced to solve geophysical inversions. Different from classical Markov chain Monte Carlo algorithms, this approach exploits the derivative information of the target posterior probability density to guide the sampling of the model space. However, its main downside is the computational cost for the derivative computation (i.e. the computation of the Jacobian matrix around each sampled model). Possible strategies to mitigate this issue are the reduction of the dimensionality of the model space and/or the use of efficient methods to compute the gradient of the target density. Here we focus the attention to the estimation of elastic properties (P-, S-wave velocities and density) from pre-stack data through a non-linear amplitude versus angle inversion in which the Hamiltonian Monte Carlo algorithm is used to sample the posterior probability. To decrease the computational cost of the inversion procedure, we employ the discrete cosine transform to reparametrize the model space, and we train a convolutional neural network to predict the Jacobian matrix around each sampled model. The training data set for the network is also parametrized in the discrete cosine transform space, thus allowing for a reduction of the number of parameters to be optimized during the learning phase. Once trained the network can be used to compute the Jacobian matrix associated with each sampled model in real time. The outcomes of the proposed approach are compared and validated with the predictions of Hamiltonian Monte Carlo inversions in which a quite computationally expensive, but accurate finite-difference scheme is used to compute the Jacobian matrix and with those obtained by replacing the Jacobian with a matrix operator derived from a linear approximation of the Zoeppritz equations. Synthetic and field inversion experiments demonstrate that the proposed approach dramatically reduces the cost of the Hamiltonian Monte Carlo inversion while preserving an accurate and efficient sampling of the posterior probability.  相似文献   

20.
随着重力和重力梯度测量技术的日趋成熟,基于重力和重力梯度数据的反演技术得到了广泛关注.针对反演多解性严重、计算效率低和内存消耗大等难点问题,本文开展了三维重力和重力梯度数据的联合反演研究,该方法结合重力和重力梯度两种数据,将L0范数正则化项加入到目标函数中,并在数据空间下采用改进的共轭梯度算法求解反演最优化问题.同时,本文摒弃了依赖先验信息的深度加权函数,引入了自适应模型积分灵敏度矩阵,用来克服因重力和重力梯度数据核函数随深度增加而衰减引起的趋肤效应问题.为了提高反演计算效率,本文又推导出基于规则网格化的重力和重力梯度快速正演计算方法.模拟试算表明,改进的共轭梯度法可以降低反演的迭代次数,提高反演的收敛速度;自适应模型积分灵敏度矩阵,可以有效解决趋肤效应,提高反演纵向分辨能力;数据空间和改进的共轭梯度算法结合,可以更好地降低反演求解方程的维度,避免存储灵敏度矩阵,有效地降低反演计算时间和内存消耗量.野外实例表明,该算法可以在普通计算机下快速地获得地下密度分布模型,表现出较强的稳定性和适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号