首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hysteretic energy dissipation in a structure during an earthquake is the key factor, besides maximum displacement, related to the amount of damage in it. This energy demand can be accurately computed only through a nonlinear time‐history analysis of the structure subjected to a specific earthquake ground acceleration. However, for multi‐story structures, which are usually modeled as multi‐degree of freedom (MDOF) systems, this analysis becomes computation intensive and time consuming and is not suitable for adopting in seismic design guidelines. An alternative method of estimating hysteretic energy demand on MDOF systems is presented here. The proposed method uses multiple ‘generalized’ or ‘equivalent’ single degree of freedom (ESDOF) systems to estimate hysteretic energy demand on an MDOF system within the context of a ‘modal pushover analysis’. This is a modified version of a previous procedure using a single ESDOF system. Efficiency of the proposed procedure is tested by comparing energy demands based on this method with results from nonlinear dynamic analyses of MDOF systems, as well as estimates based on the previous method, for several ground motion scenarios. Three steel moment frame structures, of 3‐, 9‐, and 20‐story configurations, are selected for this comparison. Bias statistics that show the effectiveness of the proposed method are presented. In addition to being less demanding on the computation time and complexity, the proposed method is also suitable for adopting in design guidelines, as it can use response spectra for hysteretic energy demand estimation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The dynamic response of equipment mounted on an isolated raised floor inside a building while the primary fixed base structure is subjected to harmonic and earthquake ground motions is numerically investigated. Sliding concave foundation (SCF) system is utilized for isolating the raised floor. The equations of motion for a MDOF shear building containing a SCF isolated raised floor with a mounted equipment are developed and the rigid link method is utilized to handle the non‐linearity of the system. The equipment, which can be modelled as a SDOF or MDOF system, may represent a critical computer unit or telecommunication processing system. SCF can be used easily to achieve the desired long period, necessary for protecting sensitive equipment. In this investigation, the ability of SCF in reducing the acceleration level experienced by the equipment inside a building is demonstrated while the lateral displacement is still within an acceptable range. The analysis considered the case of equipment housed in the upper floors of a building where the acceleration is amplified and the motion contains strong components at long periods. For this purpose, different excitations including both harmonic and real earthquake ground motions are employed and the performance of the system is evaluated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The determination of displacement demands for masonry buildings subjected to seismic action is a key issue in the performance-based assessment and design of such structures. A technique for the definition of single-degree-of-freedom (SDOF) nonlinear systems that approximates the global behaviour of multi-degree-of-freedom (MDOF) 3D structural models has been developed in order to provide useful information on the dependency of displacement demand on different seismic intensity measures. The definition of SDOF system properties is based on the dynamic equivalence of the elastic properties (vibration period and viscous damping) and on the comparability with nonlinear hysteretic behaviour obtained by cyclic pushover analysis on MDOF models. The MDOF systems are based on a nonlinear macroelement model that is able to reproduce the in-plane shear and flexural cyclic behaviour of pier and spandrel elements. For the complete MDOF models an equivalent frame modelling technique was used. The equivalent SDOF system was modelled using a suitable nonlinear spring comprised of two macroelements in parallel. This allows for a simple calibration of the hysteretic response of the SDOF by suitably proportioning the contributions of flexure-dominated and shear-dominated responses. The comparison of results in terms of maximum displacements obtained for the SDOF and MDOF systems demonstrates the feasibility and reliability of the proposed approach. The comparisons between MDOF and equivalent SDOF systems, carried out for several building prototypes, were based on the results of time-history analyses performed with a large database of natural records covering a wide range of magnitude, distance and local soil conditions. The use of unscaled natural accelerograms allowed the displacement demand to be expressed as a function of different ground motion parameters allowing for the study of their relative influence on the displacement demand for masonry structures.  相似文献   

4.
This paper presents a feasibility study of multidegrees‐of‐freedom effective force testing (MDOF‐EFT). The study is intended to facilitate the development of a force feedback controller and investigation of performance as well as robustness of MDOF‐EFT. First, the dynamics of MDOF‐EFT systems are analytically investigated. Analytical transfer functions of the control plant, the valve‐to‐force relations, showed that the plant is dynamically coupled and the natural frequencies of test structures are the transmission zeros of the plant. Using a set of model parameters from a previous study, a case study that includes controller design, numerical simulations and robust stability assessment is performed. A decoupling loop shaping (DLS) controller consisting of a pseudo inverse of the plant and second‐order loop shaping controllers is adopted as the force feedback controller. It is shown that the DLS controller provides a stable control system while successfully decoupling the control loops and compensating the control‐structure interaction. Numerical simulations demonstrate that the DLS controller enables tracking of static and dynamic forces for multiple actuators. Robust stability of MDOF‐EFT with the DLS controller is assessed using Monte Carlo simulation. The stochastic simulation results show that the DLS controller is stable and robust, providing sufficient stability margins for uncertain models with maximum 50% errors in the estimated system parameters. This paper demonstrates that MDOF‐EFT is feasible with the DLS controller and can be implemented in experimental laboratories. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
It has been shown that the operator‐splitting method (OSM) provides explicit and unconditionally stable solutions for quasi‐static pseudo‐dynamic substructure testing. However, the OSM provides only an explicit target displacement but not an explicit target velocity, so that it is essentially an implicit method for real‐time substructure testing (RST) when the velocity‐dependent restoring force is considered. This paper proposes a target velocity formulation based on the forward difference of the predicted displacements so as to render the OSM explicit for RST. The stability and accuracy of the resulting OSM‐RST algorithm are investigated. It is shown that the OSM‐RST is unconditionally stable so long as the non‐linear stiffness and damping are of the softening type (i.e. the tangent stiffness and damping never exceed the initial values). The stability of the OSM‐RST for structures with infinite tangent damping coefficient or stiffness is also proved, and the stability of the method for MDOF structures with a non‐classical damping matrix is demonstrated by an energy criterion. The effects of actuator delay and compensation are analysed based on the bilinear approximation of the actuator step response. Experiments on damped SDOF and MDOF structures verify that the stability of the OSM‐RST is preserved when the experimental substructure generates velocity‐dependent reaction forces, whereas the stability of real‐time substructure tests based on the central difference method is worsened by the damping of the specimen. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A shallow lattice dome subjected to three independent sets of step or impulse loads is investigated. Symmetric and asymmetric loading distributions are considered. The dynamic response is determined by numerical integration, and critical loads are defined by the Budiansky-Roth criterion. Interaction curves for fixed maximum response and for snap-through instability are obtained, and a comparison is made with previous results for static loading.  相似文献   

8.
ZJ15D型石油钻机井架的瞬态响应研究   总被引:2,自引:0,他引:2  
传统上通过静力,或者利用最大设计钩载乘以动载系数代替动载荷的研究方法对石油井架进行结构分析已经不符合现场石油井架在复杂时间载荷作用下的真实动态响应情况,尤其在起下钻和钻进时,井架要承受瞬态冲击、钻机振动等随时间变化的载荷作用。本文运用时间历程方法,通过模拟井架钻井时的典型工况,结合大型有限元ANSYS软件,对大庆油田普遍采用的ZJ15D型石油钻机井架进行了动态响应计算,得出了:在瞬时冲击下,井架动力响应的产生存立柱轴向、井架侧向和前开口方向具有同时性,但最大值出现的时刻不同;严重冲击载荷作用下,井架顶部开口响应最为强烈,危险时位移可达4cm等结论。结论对井架结构设计、油田安全钻井和延长井架使用寿命具有现实意义。  相似文献   

9.
非比例阻尼线性体系地震反应计算的振型分解反应谱法   总被引:2,自引:0,他引:2  
以非比例阻尼线性体系地震反应计算实数形式的一般解答为基础,推导得到了非比例阻尼线性体系水平地震作用计算的多种形式,建立了非比例阻尼线性体系地震反应计算振型分解反应谱法的基本过程与步骤。最后,以一个五层剪切型结构为例,通过与各种常用直接积分方法计算结果的比较,证实了本文非比例阻尼线性体系地震反应计算实数形式的一般解答的高精度与可靠性。通过对多种形式地震作用所得地震效应的比较,证实了非比例阻尼线性体系地震反应振型分解反应谱方法的可靠性及可行性。  相似文献   

10.
Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic- and wind-resistant performance objectives are fi rst reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfi ed by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.  相似文献   

11.
Estimating seismic demands on structures, to predict their performance level with confidence, requires explicit consideration of the structural inelastic behaviour: to this end, the use of nonlinear static procedures is inevitably going to be favoured over complex nonlinear time-history methods. The currently available assessment procedures have been tested predominantly against building frames. A newly derived assessment procedure is proposed within the scope of bridge applications, based on an innovative displacement-based adaptive pushover technique. The procedure, which can be incorporated into a performance-based engineering philosophy, is applicable to MDOF continuous span bridges with flexible or rigid superstructures, and for varying degrees of abutment restraint. As a first application to determine the viability of the proposed procedure, a parametric study is conducted on a ensemble of bridges subjected to earthquake motion. It is shown that, compared to the seismic demand estimated by means of the more accurate nonlinear dynamic analysis tool, the novel static assessment method can lead to the attainment of satisfactory predictions, both in terms of displacement as well as moment demand on members.  相似文献   

12.
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for one-dimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom (MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom (DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.  相似文献   

13.
框架结构基于能量地震反应分析及设计方法的理论研究   总被引:3,自引:0,他引:3  
通过对多自由度体系结构在地震作用下的能量分析,考虑地震动因素和结构自身特性,提出基于能量概念的二阶段设计方法,取得了较有意义的研究成果,对于基于能量的抗震设计方法走向实用化,提供一条思路。  相似文献   

14.
动力机器基础振动与设计若干问题的讨论   总被引:4,自引:1,他引:3  
讨论了《动力机器基础设计规范》(GB 50040-96)中的若干问题,包括质-弹-阻模型、地基动力参数、荷载组合和基础的构造要求等几个方面。对动力响应,基于弹性半空间理论定义质-弹-阻模型中引入的各个参数(频变),基于该模型计算稳态荷载或暂态荷载作用下基础的动力响应;引入承载力、变形和稳定性等的验算,并在基础的形状尺寸、埋深、材料、配筋等构造方面为设计人员提供指导;对基础的重要程度进行分类,对重要基础,特殊场地条件下的基础,建造时宜考虑沉降等观测手段,及可改变基础固有特性和加固维修等相关的措施。  相似文献   

15.
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings.The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades.However,no investigation has yet been carried out for the case of soil-structure systems.In the present study,through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns,including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils,the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated.The results of this study show that depending on the level of inelasticity,soil flexibility and number of degrees-of-freedoms(DOFs),structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems.It is also found that at high levels of inelasticity,the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.  相似文献   

16.
Passive structural control techniques are generally used as seismic rehabilitation and retrofit methodologies for existing structures. A poorly explored and exciting opportunity within structural seismic control research is represented by the possibility to design new structural forms and configurations, such as slender buildings, without compromising the structural performance through an integrated design approach. In this paper, with reference to viscous dampers, an integrated seismic design procedure of the elastic stiffness resources and viscoelastic properties of a dissipative bracing‐damper system is proposed and developed to ensure a seismic design performance, within the displacement‐based seismic design, explicitly taking into account the dynamic behaviour both of the structural and control systems. The optimal integrated seismic design is defined as the combination of the variables that minimizes a suitable index, representing an optimized objective function. Numerical examples of the proposed integrated cost‐effectiveness seismic design approach both on an equivalent SDOF system and a proportionally damped MDOF integrated system are developed defining the design variables, which minimize the cost index. Validation of the effectiveness of the proposed integrated design procedure is carried out by evaluating the average displacement of the time‐history responses to seven unscaled acceleration records selected according to EC8 provisions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames,while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design.  相似文献   

18.
The volume of Earth's oceans may be determined by a dynamic mechanism involving exchange of water between the crust and the mantle. Fast-spreading mid-ocean ridges are currently submerged to a depth at which the pressure is close to the critical pressure for seawater. This ensures optimal convective heat transport and, hence, maximal penetration of hydrothermal circulation along the ridge axes. The oceanic crust is hydrated to a depth of a kilometer or more and can therefore carry a substantial flux of water to the upper mantle when it is subducted. The current ingassing rate of water by this process is probably at least sufficient to balance the outgassing rate. If the oceans were shallower, as they may have been in the distant past, convective heat transport would be reduced and the depth of hydrothermal penetration and crustal hydration would decrease. Outgassing would exceed ingassing and ocean volume would increase. The system is self-stabilizing as long as the depth of the oceans does not exceed its present value. This mechanism could explain why continental freeboard has remained approximately constant since the Archean despite probable increases in continental area.  相似文献   

19.
在医院、教学楼等建筑中广泛采用隔震技术,能降低地震对上部结构的破坏作用。虽然隔震技术经过几十年的发展已趋于成熟,但环境及其他荷载对隔震结构性能的影响规律、结构设计的合理性以及震后结构状态评估等问题,仍需建立隔震结构健康监测系统对施工、运营期的结构响应进行监测,并对其进行评估与验证。首先,针对基础隔震结构的特点,研究了基础隔震结构的主要监测内容;在此基础上提出基础隔震结构健康监测系统的总体设计要求及原则,根据不同监测对象(整体与局部监测量)给出基础隔震结构传感器布置原则和数据采集系统软硬件设计原则,提出基础隔震结构设计验证与安全评定方法;最后给出基础隔震结构健康监测值得进一步研究的问题。  相似文献   

20.
The structural behavior of colonnade structural systems subjected to static and dynamic loading is investigated to identify the main factors affecting the stability and to improve our understanding of their behaviour. In particular, the discrete element method of analysis is utilised to study the static and dynamic behaviour of a typical section of the two storey colonnade of the Forum in Pompeii. Static analysis indicated that the failure of colonnade structures occur at higher friction angles as the weight above the structure decreases and so a sudden collapse can occur when parts of the monument are disassembled. For the dynamic analysis, the mechanical behavior of the colonnade was investigated for both harmonic and real seismic excitations. For excitations with relatively low dominant frequencies, the primary response is rocking; as the excitation frequency increases, the response becomes more complicated demonstrating both sliding and rocking movements. It was also shown that the construction methods used in ancient times, such as multi-block segmented trabeations and solid block beam, have quite significant impact on the mechanical response of the structures under static and dynamic loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号