首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
将土体视为固-液两相介质,基于饱和土体有效应力原理,建立饱和土体-地下综合管廊结构体系相互作用动力模型:在地应力平衡的静力状态下采用Duncan-Chang非线性弹性本构模型,在地震波作用的动力状态下采用Davidenkov非线性黏弹性本构模型;考虑饱和土体黏弹性动力人工边界条件,将地震动作用转化为作用在人工边界节点上的动力荷载。模型考察不同地震波时程、地震波加速度峰值、入射角度、孔隙率以及地应力场的影响,得出如下结论:(1)地震波的卓越周期与场地卓越周期相近时引起结构上的变形最大;随着地震波加速度峰值的增大结构变形增大;随着地震波入射角度的增加结构变形增大,地震波斜入射情况下产生的行波效应使得结构变形最大。(2)土体材料的孔隙水压力是影响地震中结构变形的主要因素之一。(3)将土体材料考虑为单相介质时结构上的变形要比考虑为固-液两相介质时大得多,直接将饱和土体场地中得到的地震波等效荷载施加到单相土介质-结构动力相互作用模型上,能够得到与完全基于有效应力法一致的结果。  相似文献   

2.
强地震作用下,饱和土体将进入非线性,有必要考虑非线性饱和土的地震响应以及非线性饱和土-结构相互作用问题。本文采用Biot饱和多孔介质模型,基于不规则加卸载准则的修正Davidenkov模型来描述近场区域内饱和土骨架的非线性特性,并采用集中质量显式有限元方法进行分析;远场区介质假定为线弹性饱和多孔介质,通过多次透射人工边界进行模拟;结构采用Newmark隐式时步积分方法进行分析。通过自编程序实现了非线性饱和土体的地震反应分析以及非线性饱和土-基础-结构相互作用分析。通过算例,对比分析了土体非线性对饱和土体、基础和结构反应的影响。  相似文献   

3.
蒋录珍  郭亚然  陈艳华 《地震工程学报》2017,39(6):1054-1061,1096
基于饱和两相介质弹性波动方程分析SV波在饱和土体自由表面的反射问题,引入波动方程的势函数解答,求解出二维问题中SV波入射情况下饱和土体自由场的位移、速度、加速度和应力响应。在饱和土体自由场响应解析解基础上,建立SV波入射下饱和土体自由场静、动力有限元模型。建模中考虑了如下几方面因素:(1)在不同分析步,对土体单元赋予不同材料本构。通过*model change命令进行单元生死设定,从而实现在初始应力场平衡的静力状态下采用DuncanChang本构模型,而地震波动输入时采用Davidenkov动力本构模型;(2)采用多孔介质黏弹性人工边界条件,在人工边界上分别施加固相和液相介质的弹簧和阻尼来模拟饱和土体中能量的传播;(3)将地震波转化为作用在人工边界上的等效地震荷载,施加到人工边界节点上;(4)土体单元采用4结点平面应变孔压单元(CPE4P)。有限元计算与解析解比较结果表明:SV波在垂直入射和掠入射时,竖向位移响应为零;在45°左右入射时,水平位移响应最大;60°左右入射时,竖向位移响应最大。这些结论与解析解吻合较好,本文模型为建立土-结构动力相互作用模型打下良好的基础。  相似文献   

4.
为研究土-结构接触面参数对地下综合管廊地震动力响应特征的影响,建立动力有限元数值模型,模型边界采用激励侧固定边界、远离激励侧黏性边界、其余侧自由场边界的优化组合动力边界,土体本构采用HSS模型,接触面采用改进Goodman单元,动力荷载考虑三种情况(Rayleigh波的作用、底部激励了美国加利福尼亚Upland地震波以及前两者的共同作用),分别研究不同地震动输入、接触面折减系数的改变对综合管廊内力及加速度的影响。研究结果表明:在相同的折减系数条件下,与静力作用相比,动力作用下的结构内力明显增大,综合管廊设计时应考虑地震荷载作用下内力增大的情况;随着界面折减系数的增加,正弯矩极值减小,负弯矩极值增大,加速度峰值增大;在相同接触面折减系数条件下,底部地震波输入产生的结构内力极值显著高于仅有Rayleigh波输入的情况;考虑Rayleigh波和地震波共同作用条件下,引起的管廊结构内力极值与仅考虑底部地震波输入时的结构内力极值差异不大。研究成果可供地下综合管廊结构地震响应精细化数值模拟及抗震设计参考。  相似文献   

5.
利用黏弹性人工边界和等效地震荷载时域波动输入方法,结合土层和半空间的精确动力刚度矩阵,实现了地震波斜入射下层状场地地下综合管廊地震反应分析,建立了不同场地条件下地下综合管廊分析模型。计算结果表明:地震波倾斜入射情况下,综合管廊结构地震响应与垂直入射时具有显著差异,一般SV波以30°临界角附近入射时结构地震反应最为剧烈;地下综合管廊动应力集中主要分布在管廊角部、中柱上下端;成层土波速结构变化对地下综合管廊地震反应亦具有显著影响。总体上看:当穿越软夹层时管廊结构地震反应更为剧烈,且覆盖层越厚,管廊结构内力幅值越大。因此地下综合管廊结构抗震设计宜考虑地震波倾斜入射及场地土层性质的影响。  相似文献   

6.
水域隧道地震响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文基于Biot动力固结理论和弹性动力学理论,考虑海床(土壤)的两相性、黏弹性人工边界及流(水)-固耦合作用,建立了隧道-土-流体相互作用的力学模型,讨论了P波作用下有无水的情况以及水深、水域隧道埋深、海床土性质和地震波入射角等因素对隧道及其周围海床应力的影响。结果表明:隧道周围海床土的孔隙水压力和隧道内应力随着水深的增加而增加;地震波特性和海床土特性对隧道的内应力和海床土的孔隙水压力均有较大的影响;海床土的渗透性和隧道埋深对隧道的内应力影响较小,而对隧道周围海床土的孔隙水压力影响较大;地震动的入射角对隧道的内应力和隧道附近土层的孔隙水压力均有较大影响。   相似文献   

7.
地下综合管廊由于埋深较浅,Rayleigh波能量对综合管廊的地震反应具有重要影响。建立非线性有限元三维动力数值模型,通过边界脉冲荷载生成Rayleigh波,研究Rayleigh波平行入射条件下综合管廊结构的加速度、位移和内力等响应特性,然后分别研究管廊断面尺寸、覆土厚度、Rayleigh波入射角和土体本构等因素对管廊结构动力响应特征的影响。研究结果表明:Rayleigh波平行入射作用下,综合管廊结构顶板受力表现为时而受拉以及时而受压,Rayleigh波传递过程对管廊结构受力产生不利影响;当Rayleigh波入射方向与管廊结构轴向夹角越接近90°,引起的动力响应相对越大;土体采用摩尔-库伦模型(MC模型)时,由于不能考虑材料滞回环属性对能量的耗散,相对于小应变硬化模型(HSS模型)模拟出的管廊结构内力和位移响应要大;管廊埋深越浅,结构位移响应幅值和内力响应幅度变化越大;不同截面管廊结构的纵向位移差别不大,竖向位移则随截面增大而减小,表明随着截面刚度的提高,抗变形能力增强;管廊结构内力峰值变化量随截面增大而减小,单仓结构在Rayleigh波作用下的内力响应最为显著。  相似文献   

8.
考虑土-结构相互作用的高层建筑抗震分析   总被引:17,自引:0,他引:17  
本文采用通用有限元程序ANSYS,针对上海地区一例土-箱基-高层建筑结构进行了三维有限元分析,计算中土体的本构模型采用等效线性模型,利用粘一弹性人工边界作为土体的侧向边界,并研究了土体边界位置、土性、基础埋深、基础形式以及上部结构刚度等参数对动力相互作用体系动力特性及地震反应的影响。  相似文献   

9.
利用ABAQUS有限元软件,采用壳单元模拟管廊结构,非线性地基弹簧单元模拟土-结构相互作用,非线性弹簧单元模拟带止水橡胶的承插式接头和预应力钢绞线,提出了一种考虑预应力影响的预制地下管廊纵向抗震分析的壳-弹簧有限元模型,并基于反应位移法分析了某拟建预制地下双舱管廊在地震波作用下的内力和变形。研究表明:文中壳-弹簧模型充分反映了预制地下管廊纵向接头构造及初始装配预应力,以及地震作用下的结构真实变形及内力分布,适用于预制地下管廊的纵向抗震分析。  相似文献   

10.
目前在高耸混凝土烟囱结构抗震设计和抗震性能评估中,由于缺乏合适的计算模型,一般采用刚性地基假定而忽略土-结构相互作用效应,或者采用传统的集中参数模型而忽略土的非线性特性。针对此不足,本文选用240 m高的钢筋混凝土烟囱作为研究对象,采用OpenSees程序,基于非线性文克尔地基梁模型和基于柔度法的分布塑性梁柱单元,建立了土体-基础-上部结构共同工作的整体非线性有限元分析模型,详细介绍了非线性文克尔地基梁模型主要参数的确定方法;研究了地基土非线性对高耸烟囱结构地震反应的影响,给出了考虑土-结构相互作用效应后结构周期、上部结构的内力和变形分布的变化规律。分析结果表明:考虑土-结构相互作用后,结构的自振特性、内力及节点位移都发生了不同程度的改变;考虑土体非线性特性的土-结构相互作用模型,峰值截面弯矩、剪力及截面曲率延性系数与不考虑土-结构相互作用时的结果之比分别介于0.921~1.219、0.732~1.29和0.822~1.536;而不考虑土体非线性特性的土-结构相互作用模型,峰值截面弯矩、剪力及截面曲率延性系数与不考虑土-结构相互作用时的结果之比分别介于0.838~1.578、0.92~1.76和0.656~2.831。不考虑土体非线性特性的土-结构相互作用模型的峰值截面弯矩、剪力及截面曲率延性系数的取值总体上较大,高估了烟囱结构在地震荷载作用下的内力需求。  相似文献   

11.
The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI) analysis. This method introduces a truncated boundary referred to as an artificial boundary meant to divide the soilstructure system into finite and infinite domains. An artificial boundary condition is used on a truncated boundary to achieve seismic input and simulate the wave radiation effect of infinite domain. When the soil layer is particularly thick, especially for a three-dimensional problem, the computational efficiency of seismic SSI analysis is very low due to the large size of the finite element model, which contains an whole thick soil layer. In this paper, an accurate and efficient scheme is developed to solve the nonlinear seismic SSI problem regarding thick soil layers. The process consists of nonlinear site response and SSI analysis. The nonlinear site response analysis is still performed for the whole thick soil layer. The artificial boundary at the bottom of the SSI analysis model is subsequently relocated upward from the bottom of the soil layer(bedrock surface) to the location nearest to the structure as possible. Finally, three types of typical sites and underground structures are adopted with seismic SSI analysis to evaluate the accuracy and efficiency of the proposed efficient analysis scheme.  相似文献   

12.
In this study, a novel and enhanced soil–structure model is developed adopting the direct analysis method using FLAC 2D software to simulate the complex dynamic soil–structure interaction and treat the behaviour of both soil and structure with equal rigour simultaneously. To have a better judgment on the inelastic structural response, three types of mid-rise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600 m/s, representing soil classes Ce, De and Ee, according to Australian Standards. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil–structure interaction) and (ii) flexible-base (considering soil–structure interaction). The results of the analyses in terms of structural displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that considering dynamic soil–structure interaction effects in seismic design of moment resisting building frames resting on soil classes De and Ee is essential.  相似文献   

13.
地下结构抗震理论分析与试验研究的发展展望   总被引:5,自引:0,他引:5  
目前我国在地下结构抗震分析与破坏灾变机理研究中尚存在诸多问题需要解决,在分析总结我国地下结构抗震理论与试验研究的基础上,重点阐述了需要进一步深入研究的六个关键问题:地下结构振动模型试验研究技术,土体非线性动力本构模型,高轴压的地下结构承重构件地震破坏机理,非一致波动输入及非一致波动输入下地下结构的地震反应,饱和砂土液化大变形理论及本构模型,大型三维非线性土-结构动力相互作用分析模型。这些问题的研究和解决对于完善地下结构抗震理论分析方法与试验研究技术,获得大型地下结构在地震作用下的反应规律与破坏灾变机理具有重要的科学意义和工程应用价值。  相似文献   

14.
基于人工边界子结构模型,提出一种利用混合波场实现近海场地中地震P波和SV波垂直输入的方法.该方法中用于波动输入的混合波场由计算模型两侧截断边界的自由波场和底面边界的入射波场构成,避免了不规则近海场地的自由波场求解.同时采用基于声流体单元的流固耦合算法模拟场地-海水动力相互作用,利用流体介质人工边界和黏弹性人工边界单元模...  相似文献   

15.
邵帅  邵生俊    马纯阳  王平 《世界地震工程》2019,35(4):162-170
地震作用下,饱和砂土地层地铁车站的动力反应特征是城市轨道工程抗震的关键问题。以太原地铁新近沉积粉细砂地层地铁工程为对象,通过模拟地震运动输入的饱和砂土地基地下结构的振动台模型试验,分析了不同峰值加速度地震作用下饱和砂土与地下结构相互作用的动力反应性状。研究了地震波作用的放大效应与频率特征,动孔压比增长发展过程和液化区域分布,以及动土压力的变化规律。表明加速度放大系数为1.5~2.0;0.1~0.25g峰值加速度地震作用下饱和砂土均产生动孔隙水压力累计发展;0.3g峰值加速度地震作用下饱和砂土产生液化,抑制了土与地下结构的振动放大效应,地表面大量冒水,结构模型出现了明显上浮,地下结构两侧产生震陷。  相似文献   

16.
复杂地基条件下桩-土-核岛结构相互作用模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
尹训强  滕浩钧  王桂萱 《地震工程学报》2019,41(6):1581-1586,1606
合理有效地模拟桩-土-结构动力相互作用是软土地基条件下核岛厂房结构抗震适应性分析及地基处理的关键环节。以某拟建核岛厂房实际工程为研究背景,结合SuperFLUSH软件平台,以Goodman单元模拟桩与桩周土间的接触效应,采用等价线性法描述近场软土地基非线性特性,并在模型底部和侧面引入黏性边界模拟半无限地基辐射阻尼效应,从而建立土质地基条件下桩-土-核岛结构相互作用分析模型。进而,通过对原状地基和嵌岩桩处理地基条件下核岛厂房的楼层反应谱、结构节点相对位移(绝对值)的对比分析,探讨考虑桩-土间接触效应的嵌岩桩基对核岛厂房结构的影响规律。研究成果可为实际工程中类似土质地基条件下核岛厂房结构的地基处理提供参考。  相似文献   

17.
周凤玺  宋瑞霞 《地震学报》2015,37(4):629-1267
基于Biot多孔介质波动模型,研究了非均匀饱和土层对平面P-SV波入射时的动力响应.考虑饱和土地基的物理力学特性沿厚度方向连续变化,利用亥姆霍兹矢量分解原理和动力刚度法,分析了平面入射P-SV波在非均匀饱和土层中的反射和透射,并给出了基岩表面和自由表面处反射系数和透射系数的计算表达式.基于理论推导结果,数值分析了平面SV波入射下非均匀饱和土自由场地的动力响应,其中假设饱和土地基的物理力学性质沿土层深度按幂律梯度变化.数值结果表明,平面SV波入射所引起的地面位移与基岩位移之比均随土层厚度和土体的非均匀程度、波的入射角和入射频率的增加而减小,且其竖向位移比的减小更为显著,厚土层对地震波的耗散作用尤为明显.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号