首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dil Deresi stream is a highly contaminated stream passing through the most heavily industrialized area of Izmit Bay. In this research, surface sediments in the <63-microm fraction collected from 34 sites at western part of Izmit Bay, Northeastern Marmara Sea, Turkey were analyzed by ICP-AES for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn and Zn. Metal concentrations were compared with the marine sediment quality standards (SQS) and literature data to assess the pollution status of the sediments. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The analysis revealed three groups of elements: (1) Sn is the most enriched element; (2) As, Cd, Pb and Zn are minor enriched elements; and (3) Co, Cr, Cu, Fe, Mg, Mn and Ni are at background concentrations. The distribution maps of the concentrations and enrichment factors for all heavy metals were also produced as a contour plot based on Geographic Information System (GIS) technology.  相似文献   

2.
The seasonal geochemical characteristics of the seawater and sediments and the major factors causing heavy metal contamination were investigated at the Youngil bay and the Hyungsan river estuary in the Southeast Coast of Korea, where a world-scale steel-industry complex (Pohang iron and steel industrial complex, POSCO) is located. The seasonal and spatial distribution characteristics of temperature, dissolved oxygen (DO), pH, and nutrients of the seawater were studied at 45 fixed stations, especially focusing on the river mouth area. Sediments at 27 stations were examined during winter and summer to determine the major controlling factors for the distribution of metals, using correlation matrix and R-mode factor analyses, and to evaluate the pollution status, using the modified geoaccumulation (I(geo)(')) index. Temperatures for the effluent from the POSCO located at the Hyungsan river mouth were 2-3 degrees C higher compared to other sampling areas, due to the thermal discharge from the POSCO. The DO concentration of the surface water at the Pohang old port was as low as 2-4 mg/L. In spring, the DO value at the Hyungsan river mouth was higher than 12 mg/L, by the mass multiplication of phytoplanktons at the river mouth where seawater temperature and nutrients concentrations were relatively high, resulting in the pH value of higher than 8.3. The nitrogen to phosphorus (N/P) ratios at the river mouth were 20-150 times higher compared to other areas, implying that the nitrogen loading into this semi-enclosed bay is significantly higher than phosphorus and the major nitrogen sources are not only the domestic sewage from the city but the industrial wastewater from the POSCO and other steel factories nearby. The phosphorus concentrations at the Pohang old port were shown 3-10 times higher than those at other stations, due to the inflow of pollutants generated from the nearby ships anchoring and the release of phosphate from the bottom sediment. Results from the sediment analysis showed that the major controlling factors for the distribution pattern of each metal are grain size and organic carbon (C(org)) content. Based on the factor analysis, Al, Fe, Cr, Li, and Pb were shown strongly correlated with the mean grain size (Mz), whereas Cd, Cu, Zn, and Sn with the C(org) content. Results from the fractionation of the sedimentary metals into lattice and labile fractions to characterize the mobility of sediment metals showed that the mineral lattice fraction was high in the order of Al=K>Cr>Li>Sr>Fe, while the labile fraction, which might be released to the overlying water, was in the order of Pb>Zn>Cd>Cu>Ca>Sn. Evaluation of the sediment pollution status by applying (I(geo)(')) of 13 metals showed Cd, Cu, and Zn as high as 1-3 range at the old port. Even though the overall marine pollution mainly by the world-class steel industrial complex in this semi-enclosed bay area studied does not currently pose a serious threat, due to the seawater circulation and the large influx of river discharge, the countermeasures to implement the sediments concentrated with heavy metals, especially at the old port with no seawater circulation, are still warranted for this coastal water environment.  相似文献   

3.
Surface soils (0–20 cm) were collected from along a tidal ditch of the Yellow River Estuary in August of 2007. Samples were subjected to a total digestion technique before they were analyzed for total concentrations of As, Cr, Cd, Cu, Ni, Pb, Zn, P and S in order to investigate heavy metal contamination levels in wetland soils nearby the tidal ditches and their main sources. Results showed that the mean concentrations of these heavy metals except for As and Cd were lower than the Class I criteria. Nearly all sampling sites showed lower contamination levels for As and Cd, while no contamination levels for other heavy metals. Cr, Cu, and Ni mainly originated from parent rocks, and Pb and As might originate from tidal seawater and oil field pollution, respectively; while Cd and Zn mainly originated from parent rocks and tidal seawater. Most of heavy metals showed significant correlations with total concentrations of P and S, however, no significant correlations were observed between them and soil pH, slat and soil organic matter.  相似文献   

4.
Guanabara Bay, in Rio de Janeiro state, is impacted by organic matter, oil and heavy metals. The present study evaluated the total mercury (THg) and methylmercury (MeHg) concentrations and the MeHg to THg ratio (%MeHg) in water samples from different points of the bay and in 245 organisms of three different trophic levels sampled between 1990 and 2000. Dissolved mercury concentration in estuarine water samples ranged from 0.72 to 5.23 ngl(-1). THg and MeHg in mussel, ranging from 11.6 to 53.5 microg THg kg(-1) wet wt. and 4.5-21.0 microg MeHg kg(-1) wet wt., varied according to sampling point and water quality. Planktivorous fish and mussel presented similar MeHg concentrations, meanwhile THg in planktivorous fish were lower than in mussel. Carnivorous fish showed higher THg and MeHg concentrations (199.5 +/- 119.3, 194.7 +/- 112.7 microg kg(-1) wet wt. respectively) than organisms from other feeding habits and lower trophic levels. There was a significant difference in the %MeHg among trophic levels: mussel presented lower MeHg percentage (33%) than planktivorous fish (54%) and carnivorous fish (98%).  相似文献   

5.
A suite of 36 surface sediment samples, taken between 10 and 100 m water depth in Mejillones Bay (Northern Chile), were analyzed for mineralogy, grain size, total organic carbon, Al, and heavy metal content (Cd, Zn, Ni, Mn, V, Mo). Quartz and feldspars were the main lithogenic minerals and carbonate the predominant biogenic mineral. Sediments were fine sands in the shallow zone and organic silt in the deeper zone.

Enrichment Factor and Factor Analysis approach showed that the presence of Mn in the marine sediment of Mejillones is due to a partial influence of continental input, while all other metals are not supported by lithogenic debris. Although all metals showed high concentrations in the marine sediment of Mejillones Bay, comparison between metal concentration in surface sediments and preindustrial levels in this bay, show that present values agree with natural levels.  相似文献   


6.
In the heavily industrialized Masan Bay of southern coast, Korea, the potential harmful effects of heavy metals (Cd, Co, Cu, Ni, Pb, Sn, Zn, and Hg) were evaluated in terms of the pollution load index (PLI) and ecological risk assessment index (ERI) methods, and the results obtained were considered alongside the health of the macrobenthic fauna communities. The results revealed that the bay sediments, especially in the inner bay and the outfall area of a sewage treatment plant, are exposed to moderate to serious levels of metal pollution. Hg and Cd contributed the most to the potential toxicity response indices in sediments recently deposited in the bay. The potential ecological risk assessment of heavy metals in the bay was highlighted by the use of the benthic biological pollution index (BPI), suggesting that the ERI is a useful toxicity response index, which can quantify the overall ecological risk level to a target environment.  相似文献   

7.
Three-dimensional distributions of fluorescent whitening agents (FWAs: more specifically, DSBP and DAS1), which are sewage-derived water-soluble markers, were observed in Tokyo Bay water through multi-layer sampling of water at 20 locations. In summer, FWAs predominated in the surface layers, with trace but significant concentration of FWAs in bottom water due to stratification of seawater. In winter, on the other hand, FWAs were extensively mixed into the bottom layers because of the vertical mixing of seawater. In the surface layer, FWA concentrations and the DSBP/DAS1 ratio (the concentration ratio of DSBP to DAS1) were lower in summer than in winter, suggesting more efficient photodegradation of FWAs in euphotic zones during the summer due to stronger solar radiation. Horizontally, FWAs were widely distributed over the surface layer of Tokyo Bay. Surface water with DSBP concentrations above 50ng/L, corresponding to <200 times dilution of sewage effluent, was found to have spread up to 10km from the coastline. In addition, an offshore decline in FWA concentrations was observed, showing a half-distance of 10-20km. The decrease was caused by dilution by seawater of fresh water containing FWAs. The eastern part of the bay was different with respect to surface layers, with higher concentrations seen in northeastern parts. Furthermore, dispersion of combined sewer overflow (CSO)-derived water mass was observed in Tokyo Bay after heavy rain.  相似文献   

8.
白洋淀沉积物-沉水植物-水系统重金属污染分布特征   总被引:6,自引:1,他引:5  
通过对白洋淀沉水植物及对应沉积物和水中Cd、Pb、As含量测定,以期揭示白洋淀沉积物-沉水植物-水系统中重金属污染状况及分布规律,明确不同沉水植物对重金属的富集能力.结果表明,地表水Cd、Pb、As浓度均符合我国地表水I类水质标准,不同采样区重金属浓度差异不显著.上覆水Pb浓度显著高于地表水和间隙水,间隙水As浓度显著高于地表水和上覆水;地积累指数法和潜在生态危害指数法评价结果表明,沉积物中重金属污染程度表现为Cd > Pb > As,Cd污染最严重,达到"轻度-偏重度"污染程度,"中等-极强"生态危害级别,As为清洁水平,不同采样区重金属污染程度表现为生活水产养殖区 > 纳污区 > 淀边缘区;沉水植物重金属富集能力表现为金鱼藻(Ceratophyllum demersum L.) > 菹草(Potamogeton crispus L.)和穗状狐尾藻(Myriophyllum spicatum L.) > 篦齿眼子菜(Potamogeton pectinatus L.).植物体内重金属含量与体内氮、磷含量呈显著正相关,氮、磷营养盐影响沉水植物对重金属的富集.  相似文献   

9.
A suite of 36 surface sediment samples, taken between 10 and 100 m water depth in Mejillones Bay (Northern Chile), were analyzed for mineralogy, grain size, total organic carbon, Al, and heavy metal content (Cd, Zn, Ni, Mn, V, Mo). Quartz and feldspars were the main lithogenic minerals and carbonate the predominant biogenic mineral. Sediments were fine sands in the shallow zone and organic silt in the deeper zone. Enrichment Factor and Factor Analysis approach showed that the presence of Mn in the marine sediment of Mejillones is due to a partial influence of continental input, while all other metals are not supported by lithogenic debris. Although all metals showed high concentrations in the marine sediment of Mejillones Bay, comparison between metal concentration in surface sediments and preindustrial levels in this bay, show that present values agree with natural levels.  相似文献   

10.
Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log‐linear fashion. The bioconcentration factor for these elements decreases log‐linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals.  相似文献   

11.
The proper management of coastal aquifers commonly requires an understanding of regional mass flow and complete seawater–freshwater circulation. In this study, time series observations of seawater intrusion and refreshing were conducted using a column experiment based on natural flow conditions in coastal groundwater and a sampled medium from a coastal sandy aquifer without chemical treatment. Ranges of hydrodynamic and hydrochemical variables were tested and analysed. The results showed that the zeta potential of suspended colloids in aqueous solution in an aquifer polluted with 0.5 g/kg of heavy metals exhibited an isoelectric point for pH values ranging from 5.70 to 6.07 when freshwater or seawater completely occupied the aquifer pores, which is representative of natural hydrochemical conditions. In this scenario, a high background concentration of heavy metals induced colloidal immobilization. Otherwise, seawater–freshwater circulation enabled colloid mobilization due to ionic strength and pH fluctuations. The migration of multiple heavy metals occurred at a characteristic time of approximately 1 pore volume after each intrusion stage began and when the peak rate of colloid release was reached. At these times, the colloid behaviour determined the quantity and pathway of heavy metal transport. On the basis of the influences of seawater and freshwater interactions, the quantity of mobilized particles generally decreased and was uniformly distributed in each fraction due to particle loss and decreased porous connectivity. We speculate that the decrease in the total surface area of the migratory colloids may cause colloid‐associated heavy metal transport to decrease. The experimental results provide a useful basis for testing coastal groundwater flow and mass transport models because these phenomena require full characterization to precisely evaluate the associated fluxes from the field scale to the microscopic dimension.  相似文献   

12.
Suspended sediment adsorbs pollutants from flowing water in rivers and deposits onto the bed. However, the pollutants accumulated in the river bed sediment may affect the bio-community through food chain for a long period of time. To study the problem the concentration of heavy metals (Cr, Cd, Hg, Cu, Fe, Zn, Pb and As) in water, sediment, and fish/invertebrate were investigated in the middle and lower reaches of the Yangtze River during 2006-2007. The concentrations of heavy metals were 100-10,000 times higher in the sediment than in the water. Benthic invertebrates had relatively high concentrations of heavy metals in their tissues due to their proximity to contaminated sediments. Benthic invertivore fish had moderately high concentrations of heavy metals whereas phytoplanktivore fish, such as the silver carp, accumulated the lowest concentration of heavy metals. The concentrations of Cu, Zn, and Fe were higher than Hg, Pb, Cd, Cr, and As in the tissue samples. The concentration of heavy metals was lower in the river sediments than in the lake sediments. Conversely, the concentration of heavy metals was higher in river water than in lake water. While a pollution event into a water body is often transitory, the effects of the pollutants may be long-lived due to their tendency to be absorbed in the sediments and then released into the food chain. The heavy metals were concentrated in the following order: bottom material 〉 demersal fish and benthic fauna 〉 middle-lower layer fish 〉 upper-middle layer fish 〉 water.  相似文献   

13.
《Marine pollution bulletin》2013,77(1-2):333-348
The Bay of Bakar is one of the most heavily polluted bays at the Eastern Adriatic. Three major industrial companies potentially endanger the bay. The concentration of major, minor and trace elements in surface sediments from thirteen stations was discussed in relation to the sediment type and foraminiferal assemblages. The distribution of major elements in the bay is influenced by geological nature of surroundings. Heavy metal distribution depends on pollution sources and on amount of mud fraction: fine-grained sediments are enriched by them in comparison with coarse-grained ones. Different sediment quality criteria complicate the pollution assessment in the bay. Heavy metal concentrations generally fall into allowed depositional values for marine environments; only area in front of the coke plant and the City of Bakar harbor is heavily polluted. Stress-tolerant foraminiferal species dominate at stations with higher concentrations of heavy metals and coarse-grained sediments consist of larger number of epifaunal taxa.  相似文献   

14.
Nagahama Bay of Satsuma Iwo‐Jima Island, southwest Japan, is an excellent place for studying sedimentation of iron‐oxyhydroxides by shallow‐marine low‐temperature hydrothermal activity. Its fishing port has a narrow entrance that limits exchange of seawater between the bay and open ocean, allowing the accumulation of fine‐grained precipitates of iron‐bearing materials (Fe‐oxyhydroxides) on the seafloor. The fishing port is usually filled with orange‐ to brown‐colored Fe‐rich water, and deposits >1.5 m thick Fe‐rich sediments. To elucidate the movement and depositional processes of the Fe‐rich precipitates in the bay, we conducted continuous profiling of turbidity throughout the tidal cycle and monitoring of surface water. The results showed that clear seawater entered the bay during the rising tide, and turbid colored water flowed into the ocean during the ebb tide. Neap tide was found to be an optimal condition for sedimentation of Fe‐oxyhydroxides due to weak tidal currents. Storms and heavy rains were also found to have influenced precipitation of Fe‐oxyhydroxides. Storm waves disturbed the bottom sediments, resulting in increased turbidity and rapid re‐deposition of Fe‐oxyhydroxides with an upward‐fining sequence. Heavy rain carried Fe‐oxyhydroxides originally accumulated in nearby beach sands to the bay. Our findings provide information on optimal conditions for the accumulation of Fe‐rich sediments in shallow‐marine hydrothermal settings.  相似文献   

15.
大通湖及东洞庭湖区生物体重金属的水平及其生态评价   总被引:4,自引:0,他引:4  
于2005年11月采集了大通湖及东洞庭湖区湖水和水生生物样品,并测定了水和水生生物样品中重金属(Cd、Pb、Hg、As)的含量,并对湖区生物体重金属进行了污染评价.研究结果表明,大通湖及东洞庭湖区湖水中重金属含量较小,绝大部分采样点水质都属于国家Ⅰ类水标准;水生生物体内CD、Pb含量为虾>螺>鱼,Hg的含量为鱼>螺>虾,As的含量为螺>虾>鱼;而鱼类重金属含量则为底栖鱼类>中上层鱼类,肉食性鱼类>植食性鱼类.大通湖及东洞庭湖区生物体中CD、Pb的污染指数为虾>螺>鱼,Hg的污染指数则为鱼>螺>虾,As的污染指数则为螺>虾>鱼.  相似文献   

16.
An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land‐based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run‐off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.  相似文献   

17.
《Marine pollution bulletin》2009,58(6-12):832-837
Mussels (Mytilus galloprovincialis) and diffusive gradients in thin films (DGT) devices were deployed together for three one-month periods in coastal waters of Sardinia (Italy), in order to assess the levels of Cd, Cu, Ni, and Pb in areas differently affected by anthropogenic activities. DGT devices were more sensitive than mussels in detecting differences in metal concentrations between sites, while interpretation of the biomonitoring data revealed difficulties related to the biotic and abiotic factors that can influence the measurements. Regression analysis showed a significant correlation between Cd and Pb concentrations measured in the mussel tissues and bioavailable metal levels in seawater. Moreover transplanted mussels did not accumulate Cu and Ni following pre-exposure, although DGT showed significant concentrations of bioavailable forms of these metals in seawater. The results provided an estimate of the water quality with respect to dissolved metals and pointed out the usefulness of a combination of biomonitoring and DGT techniques for a better understanding of trace metal availability in coastal waters.  相似文献   

18.
Phytoremediation, a plant‐based and cost‐effective technology for the cleanup of contaminated soil and water, is receiving increasing attention. In this study, the aquatic macrophyte Eleocharis acicularis was examined for its ability to take up multiple heavy metals and its potential application for phytoremediation at an abandoned mining area in Hokkaido, Japan. Elemental concentrations were measured in samples of E. acicularis, water, and soil collected from areas of mine tailing and drainage. The results reveal that Pb, Fe, Cr, Cu, Ni, and Mn accumulation in the plants increased over the course of the experiment, exceeding their initial concentrations by factors of 930, 430, 60, 25, 10, and 6, respectively. The highest concentrations of Fe, Pb, Zn, Mn, Cr, Cu, and Ni within the plants were 59500, 1120, 964, 388, 265, 235, and 47.4 mg/kg dry wt., respectively, for plants growing in mine drainage after 11 months of the experiment. These results indicate that E. acicularis is a hyperaccumulator of Pb. We also found high Si concentrations in E. acicularis (2.08%). It is likely that heavy metals exist in opal‐A within cells of the plant. The bioconcentration factors (BCF: ratio of metal concentration in the plant shoots to that in the soil) obtained for Cr, Cu, Zn, Ni, Mn, and Pb were 3.27, 1.65, 1.29, 1.26, 1.11, and 0.82, respectively. The existence of heavy metals as sulphides is thought to have restricted the metal‐uptake efficiency of E. acicularis at the mine site. The results of this study indicate that E. acicularis shows great potential in the phytoremediation of mine tailing and drainage rich in heavy metals.  相似文献   

19.
At present, there is a very limited information on the levels and distribution of dissolved metals in Manila Bay. In this study, the horizontal and vertical distribution of operationally defined species (labile, bound and total) of dissolved copper (Cu), cadmium (Cd) and zinc (Zn) were determined using differential pulse anodic and cathodic stripping voltammetry in water samples obtained from 18 stations in November 1998. In addition, the 24-h variability in the concentrations of these species at different depths in the water column was determined. These measurements were complemented by the determination of temperature, salinity, dissolved oxygen, chlorophyll a, particulate organic carbon and nutrients. Results showed that more than 50% of total dissolved copper and cadmium were labile while 50% of total dissolved zinc was organically bound. Vertical profiles showed that Cu, Cd and Zn concentrations were generally high at the surface. Zinc and cadmium were characterised by the presence of a mid-depth minimum while copper did not show any clear vertical trend.

Dissolved Cu concentrations during the spatial and diurnal samplings ranged from 0.32 to 6.95 nM and 1.52 to 45.65 nM, respectively. For Cd, the concentrations in 18 stations ranged from 0.05 to 2.92 nM, and from 0.03 to 2.42 nM over a 24-h period. Zn concentrations ranged from 2.48 to 147.43 nM and 2.87 to 88.27 nM during the spatial and diurnal samplings, respectively. The large variation in the concentration of Cu, Cd and Zn in the bay was observed to be associated with the presence of a large vertical density gradient in the water column, which appeared to limit the exchange of materials between the surface and bottom waters. Elevated levels of these metals near point sources suggest anthropogenic inputs in the bay.  相似文献   


20.
The potential association of acid-volatile sulfides (AVS) and reactive (HCl soluble) Fe with the distribution of reactive trace metals (Cu, Cd, Ni, Pb and Zn) was investigated in sediment cores collected in the Igua?u river estuarine system (Guanabara bay, Brazil), within the river (core R) and the bay (core B) areas. Moderate to extremely high AVS concentrations (33-314 micromol g(-1)) were found in the rapidly-accumulated sediments of this eutrophicated estuary. AVS showed significant correlations with Fe, Ni and Pb in core B, whereas no correlation between AVS and metals was observed in core R. Results suggest that the AVS:Fe molar ratio may often reflect the diagenetic conditions controlling the distribution of Cd and Cu in core B better than AVS and Fe levels themselves. A shift in the biogeochemical controls of metal distribution from the river to the open bay sediments is suggested, with a greater association of most metals with AVS and Fe in bay sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号