首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of measurements of the intensity of 1.58-μm emissions of the Infrared Atmospheric System of molecular oxygen (IRAO2) conducted at the Zvenigorod scientific station of the Institute of Atmospheric Physics of the Russian Academy of Sciences (φ = 55.7°N, λ = 36.8°E), seasonal variations are estimated for various solar zenith angles. Their amplitude has the maximum value at the solar zenith angles χ S ∼ 105–110°. It decreases at χ S ∼ 125–130° and tends to zero at χ S ∼ 80–85°. The comparison of currently measured values of the 1.58-μm emission intensity of the Infrared Atmospheric System of molecular oxygen with published data on the intensity of this emission obtained in 1961–1966 reveals their decrease over approximately 50 years. This fact is in good agreement with similar behavior of the emission intensity of atomic oxygen (557.7 nm) over the period considered.  相似文献   

2.
On the basis of the data of ground-based spectrometric observations in Zvenigorod (55.7°N, 36.8°E) and published results of measurements of the intensity of the Infrared Atmospheric system of molecular oxygen obtained at other stations, empirical relations describing variations in the intensity of the 1.58-μm emission for various solar and geophysical conditions are calculated.  相似文献   

3.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite on 25 April 2007, and began science observations on 14 May 2007. SOFIE conducts solar occultation measurements in 16 spectral bands that are used to retrieve vertical profiles of temperature, O3, H2O, CO2, CH4, NO, and polar mesospheric cloud (PMC) extinction at wavelengths from 0.330 to 5.006 μm. SOFIE performs 15 sunset measurements at latitudes from 65° to 85°S and 15 sunrise measurements from 65° to 85°N each day. This work describes the SOFIE instrument, measurement approach, and retrieval results for the northern summer of 2007.  相似文献   

4.
The results of rocket and satellite measurements of carbon dioxide emissions at a wavelength of 15 μm in the upper atmosphere have been systematized and analyzed. Analytical expressions describing the dependence of the altitude distribution of 15-μm CO2 emission intensity and its variation in the altitude range from 100 to 130 km on the season, latitude, and solar activity have been obtained.  相似文献   

5.
Phreatic eruptions occurred at the Meakandake volcano in 1988, 1996, 1998, 2006, and 2008. We conducted geochemical surveillance that included measurements of temperature, SO2 emission rates, and volcanic gas composition from 2003 to 2008 at the Nakamachineshiri (NM), Northwest (NW), and Akanuma (AK) fumarolic areas, and the 96–1 vent, where historical eruptions had occurred. The elemental compositions of the gases discharged from the different areas are similar compared with the large variations observed in volcanic gases discharged from subduction zones. All the gases showed high apparent equilibrium temperatures, suggesting that all these gases originated from a common magmatic gas. The gases discharged from each area also exhibited different characteristics, which are probably the results of differences in the conditions of meteoric water mixing, quenching of chemical reactions, and vapor-liquid separation. The highest apparent equilibrium temperatures (about 500°C) were observed in the case of NW fumarolic gases, despite the low outlet temperature of about 100°C at these fumaroles. Since the NW fumaroles were formed as a result of the 2006 phreatic eruption, the high-temperature gas supply to the NW fumarole suggests that the phreatic eruption was caused by the ascent of high-temperature magmatic gases. The temperatures, compositions, and emission rates of the NM and 96–1 gases did not show any appreciable change after the 2006 eruption, indicating that each fumarolic system had a separate magmatic-hydrothermal system. The temperatures, compositions, and emission rates of the NM fumarolic gases were apparently constant, and these fumaroles are inferred to be formed by the evaporation of a hydrothermal system with a constant temperature of about 300°C. The 96–1 gas compositions showed large changes during continuous temperature decrease from 390° to 190°C occurred from 2003 to 2008, but the sulfur gas emission rates were almost constant at about four tons/day. At the 96–1 vent, the SO2/H2S ratio decreased, while the H2/H2O ratio remained almost constant; this was probably caused by the rock-buffer controlled chemical reaction during the temperature decrease.  相似文献   

6.
The long-term variations in the second degree sectorial Stokes parameters of the geopotential have been determined from TOPEX-POSEIDON (T/P) satellite altimeter data, covering the period of January 1, 1993 to January 3, 2001 (T/P cycles 11-305). It is the first attempt to determine the variations in the second sectorial harmonics in the Earth’s inertia tensor due to the ocean dynamics. The variations amount to about 1 × 10−10 (J 2 (2) ≈ 1.6 × 10−6 and S 2 (2) ≈ −0.9 × 10−6). The variations are about 5% of the tidal effect. This corresponds to variations in the directions of the equatorial axes of the Earth’s inertia ellipsoid of up to 10 arc-seconds. Consequently, the annual and semi-annual variations of the Earth’s equatorial flattening is about 10−9; i.e. it corresponds to a change of 8 units of its denominator of 91 030. (The equatorial flattening ≈ 1/91 030). Since the coverage of the Earth’s ocean surface is not worldwide, and the inclination of T/P is i = 66°, it is only 58.2% (min. depth of the ocean 2 000 m) of the Earth’s surface which is processed, the torque, resulting from the seasonal transfer of masses within a sea surface layer, is not zero. It amounts up to 1016 kg m2s−2, which is comparable to the total indirect tidal torque due to the Moon and the Sun, ∼ 3.9 × 1016 kg m2s−2. However, the above estimate strongly depends on the adopted thickness of the sea surface layer, ΔR = 50 m. For a larger thickness of ΔR = 100 m, the seasonal torque amounts to about ∼ 2.3 × 1016 kg m2s−2.  相似文献   

7.
The mesopause kinetic temperature at an altitude of 87 km measured with a SABER broadband radiometer installed on the TIMED satellite and the hydroxyl molecule rotational temperature measured with a ground-spectrograph installed in high-latitude eastern Siberia (Maimaga optical station; φ = 63°N, λ = 129.5°E) are compared. The data of the observations performed from 2002 to 2006 have been analyzed. The temperatures measured during the satellite passes at distances not larger than 300 km from the intersection of the spectrograph sighting line with the hydroxyl emitting layer (∼87 km) have been compared. An analysis of 130 cases of coincident measurements indicated that the average hydroxyl molecule rotational temperatures are systematically lower than the average kinetic temperature at an altitude of the hydroxyl layer measured with SABER by 4.4 K (with a standard deviation of 11.4 K). A seasonal dependence is observed regarding the difference between the ground-based and satellite measurements. The difference decreases from 10 K in January to zero towards March. However, the time variations in the temperature obtained with the ground-based device and on the satellite are similar. Based on the performed analysis, it has been concluded that a series of hydroxyl rotational temperatures can be used to study temperature variations on different time scales, including long-term trends at the temperature emission altitude (∼87 km).  相似文献   

8.
The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.  相似文献   

9.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

10.
Methane emissions from hydroelectric reservoirs can comprise a considerable portion of anthropogenic methane. However, lack of data on CH4 emissions in different geographical regions and high spatial‐temporal variability in the emission rates of reservoirs has led to uncertainties regarding regional emission estimates of CH4. In the subtropical plateau climate region, we used the Ertan hydroelectric reservoir as a study area. The CH4 flux at the air‐water interface was assessed by floating chambers and factors influencing emissions, including the distance from the dam, water depth, seasonal variation in wet and dry season, air‐water temperature gradient and wind speed, and was also studied through a year‐long systematic sampling and monitoring experiment. The results showed that the surface of the reservoir was a source of CH4 during the sampling period and the annual average CH4 flux was 2·80 ± 1·52 mg m?2 d?1. CH4 flux (and its variation) was higher in the shallow water areas than in the deep‐water areas. CH4 flux near the dam was significantly higher than that of other locations farther from the dam in the dry season. The seasonal variations of CH4 emission in wet and dry seasons were minor and significant diurnal variations were observed in wet and dry seasons. Exponential relationships between the CH4 flux and air‐water temperature gradient were found. Air‐water temperature gradient was an important factor influencing diurnal variations of CH4 flux in the Ertan hydroelectric reservoir. These results indicate that systematic sampling is needed to better estimate CH4 flux through coverage of the spatial variation of different water depths, measuring‐point distance from the dam, seasonal variation in wet and dry seasons and changes in climate factors (such as air‐water temperature gradient). Our results also provide a fundamental parameter for CH4 emission estimation of global reservoirs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.  相似文献   

12.
In this paper we investigate the tidal triggering evidence on the earthquakes of the seismic area of the Hellenic Arc using the Hist(ogram)Cum(mulation) method. We analyze the series of the earthquakes occurred in the area which is confined by the longitudes 22° and 28°E and latitudes 34° and 36°N in the time period from 1964 to 2012. In this time period 16,137 shallow and of intermediate depth earthquakes with ML up to 6.0 and 1,482 deep earthquakes with ML up to 6.2 occurred. The result of the this analysis indicate that the monthly variation of the frequencies of earthquake occurrence is in accordance with the period of the tidal lunar monthly variations, and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal solar (S2) tidal variations. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level.  相似文献   

13.
Captured CO2 could be deliberately injected into the ocean at great depth, where most of it would remain isolated from the atmosphere for centuries. CO2 can be transported via pipeline or ship for release in the ocean or on the sea floor. In Taiwan, CO2 release is preliminarily projected from 2010 to 2030 in an average amount of 6.957 Gt within this duration. If deep sea sequestration for CO2 can be the possible option in Taiwan, it seems to exists possible potential area delimited between 122.0°E to 122.5°E and 21.8°N to 22.3°N for CO2 sequestration on account of its isolated and flat topography. Apparently, the area to the southeast of Taiwan is found to reach a depth deeper than −3,000 m and can be taken as a testing area for pilot studies. This study searches the area using the contours from the depth of −4,554 to −5,500 m with 1-m interval; the area, topographic volume, maximum mean height (volume/area), and ocean volume are reported. If the emission rate is kept constantly, for 20-year storage it needs 3 m of thickness reaching the sea ridge at the depth −4,554 m using top-down style; for 100 years of storage it needs 12 m. On the other hand, if it accounts for the bottom the sea floor is taken as the reference and the accumulated CO2 is stored from the depth at −4,900 m using bottom-up style, it requires about 37 m for the 20-year storage and 61 m for one decade.  相似文献   

14.
The coercivity spectrum of low-field high-temperature partial thermoremanent magnetization (PTRM) of a synthetic hematite powder, extremely high at room temperature, decreases very slowly with increasing temperature up to 500°C then decreases rapidly, especially above 600°C. From the AF demagnetization curves at 600 and 650°C it is calculated, following the Néel's theory of single-domain particles that the grains carrying the PTRM have a mean coercive force of 23 ± 5 kOe and a mean grain size of 0.40 ± 0.15 μm, which is not significantly different from the mean grain size of 0.48 ± 0.03 μm from electron micrograph observations.  相似文献   

15.
2021年5月21日晚21时48分,云南省大理州漾濞县(震中:25.67°N,99.87°E)发生M_S6.4地震,震源深度8 km。为快速获得此次地震同震形变场及断层几何参数,研究该次地震的发震构造等,文章基于震前、震后的sentinel-1A卫星升降轨SAR数据进行二轨法差分雷达干涉测量(DInSAR),并基于Okada弹性半空间位错模型反演断层几何参数。研究结果如下:(1)此次地震造成的同震形变场长约19 km,宽约20 km;(2)升轨雷达视线向最大形变约为8.2 cm,降轨雷达视线向最大形变约为8.7 cm;(3)地震断层走向为313.7°,倾角为87°,滑动角为175°,为右旋走滑型断层,最大滑动量为0.79 m,反演得出的地震矩为1.48×10~(18) N·m,矩震级为M_W6.1。在川滇块体向南挤出的构造背景下,块体西边界的维西—乔后断裂、红河断裂发生右旋走滑,本次地震便是维西—乔后断裂南段分支断裂右旋走滑活动的体现。  相似文献   

16.
The spatio-temporal evolution of geomagnetic pulsation bursts at frequencies of 1–3 Hz, observed at the Mondy (MLT ≈ 1200; Mlat = 46.8°; L = 2.16) and Borok (MLT ≈ 0820; Mlat = 54.0°; L = 2.94) midlatitude observatories and Lovozero auroral observatory (MLT ≈ 0820; Mlat = 64.2°; L = 5.36), has been studied. The considered bursts were registered in daytime sector of the magnetosphere after sudden impulses (SIs) caused by dramatic increases in the solar wind dynamic pressure and registered on board the WIND satellite. The SI onset time corresponds to the Sc* time shown in the Geomagnetic Indices Bulletin. The possible relationship between the excitation of these bursts and the variations in the particle partial density in the range of energies 0.03–45 keV per unit charge has been studied. The bursts were registered on board the LANL geosynchronous satellites. A comparison of the particle partial density variations measured on the satellites and the variation temperature anisotropy (A = T/T − 1) with the variations in the pulsation burst amplitude on the ground indicated that the partial density maximum and the minimum (A ≤ 0) of the electron temperature anisotropy index in the vicinity of local noon coincide in time with the pulsation generation instant. A comparison of the electron partial density variations on the LANL-1994 and LANL-97A geosynchronous satellites spaced in longitude and the spatio-temporal variations in the development of bursts make it possible to assume that 1–3 Hz geomagnetic pulsations are excited in the vicinity of local noon and subsequently propagate along the ionospheric waveguide.  相似文献   

17.
Freezing can increase the emissions of carbon dioxide(CO_2) and nitrous oxide(N_2O) and the release of labile carbon(C) and nitrogen(N) pools into the soil. However, there is limited knowledge about how both emissions respond differently to soil freezing and their relationships to soil properties. We evaluated the effect of intensity and duration of freezing on the emissions of CO_2 and N_2 O, net N mineralization, microbial biomass, and extractable C and N pools in soils from a mature broadleaf and Korean pine mixed forest and an adjacent secondary white birch forest in northeastern China. These soils had different contents of microbial biomass and bulk density. Intact soil cores of 0–5 cm and 5–10 cm depth sampled from the two temperate forest floors were subjected to -8, -18, and -80°C freezing treatments for a short(10 d) and long(145 d) duration, and then respectively incubated at 10°C for 21 d. Soil cores, incubated at 10°C for 21 d without a pretreatment of freezing, served as control. Emissions of N_2 O and CO_2 after thaw varied with forest type, soil depth, and freezing treatment. The difference could be induced by the soil water-filled pore space(WFPS) during incubation and availability of substrates for N_2 O and CO_2 production, which are released by freezing. A maximum N_2 O emission following thawing of frozen soils was observed at approximately 80% WFPS, whereas CO_2 emission from soils after thaw significantly increased with increasing WFPS. The soil dissolved organic C just after freezing treatment and CO_2 emission increased with increase of freezing duration, which paralleled with a decrease in soil microbial biomass C. The cumulative net N mineralization and net ammonification after freezing treatment as well as N_2 O emission were significantly affected by freezing temperature. The N_2 O emission was negatively correlated to soil p H and bulk density, but positively correlated to soil K_2SO_4-extractable NO_3~--N content and net ammonification. The CO_2 emission was positively correlated to the cumulative net N mineralization and net ammonification. From the above results, it can be reasonably concluded that for a wide range of freezing temperature and freezing duration, N_2 O and CO_2 emissions after thaw were associated mainly with the changes in soil net N mineralization and the availability of substrate liberated by freezing as well as other soil properties that influence porosity.  相似文献   

18.
Surface partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC), temperature, salinity and chlorophyll a (Chl a) at grid stations were measured in the southern Yellow Sea (SYS; 32–37°N to 120–125°E) during four cruises conducted in March 2005 (winter), April 2006 (spring), May 2005 (late spring), and July 2001 (summer). Factors influencing pCO2 spatial and seasonal variations are explored.Surface seawater pCO2 during winter was oversaturated with respect to the atmosphere in the entire study area (380–606 μatm), primarily due to the complete mixing of the water column in winter which brought CO2-enriched bottom water to the surface. However, during spring, surface pCO2 in the central SYS was undersaturated relative to the atmosphere with a low range between 274 and 408 μatm. The net CO2 sink in the central SYS was mainly due to the consumption of CO2 by the strong phytoplankton activity and to the weak water stratification, whereas surface pCO2 in the nearshore area was oversaturated for the atmosphere owing to vertical mixing and terrestrial inputs. During summer, surface pCO2 varied between 125 and 599 μatm over the entire sampling area. In the Changjiang (Yangtze River) Diluted Water (CDW) area, surface pCO2 was undersaturated because of the nutrient inputs via the Changjiang, triggering strong phytoplankton activity, whereas surface pCO2 was oversaturated in other areas. We conclude that the nearshore area behaves as a source of atmospheric CO2 during the entire investigated periods owing to vertical mixing and terrestrial inputs as well as upwelling, whereas the central region generally shifts from a source of CO2 in March to a sink in the remaining time of the investigation.  相似文献   

19.
The altitude profiles of particulate extinction in the upper troposphere and lower stratosphere (UTLS) obtained from SAGE-II in the latitude region 0–30°N over the Indian longitude sector (70–90°E) are used to study the latitudinal variation of its annual pattern in this region during the volcanically quiescent period of 1998–2003. The SAGE-II data is compared with the lidar measurements from Gadanki (13.5°N, 79.2°E) when the satellite had an overhead occultation pass over a small geographical grid centered at this location. The particulate optical depth (τp) in the UT region shows a general decrease with increase in latitude and a pronounced summer–winter contrast with relatively low values during winter and high values during summer. In general, these variations are in accordance with the latitudinal variation of convective available potential energy (CAPE) and thunderstorm activity, which are good representative indices of tropospheric convection. While the particulate extinction (and τp) in the 18–21 km (LS1) region is relatively low in the equatorial region up to 15°N, it shows an increase in the off-equatorial region, beyond 15°N. While the annual variation of τp in the LS1 region is almost insignificant near the equator, it is rather well pronounced in latitude region between 10 and 15°N with relatively high values during winter and low values during summer. Beyond 20°N, this shows a prominent peak during summer. At a higher altitude, the 21–30 km (LS2) region, the latitude variation of τp shows a different pattern with high values near the equator and low values in the off-equatorial region confirming the existence of a stratospheric aerosol reservoir. Low values of τp at lower regime (LS1) near the equator could be due to rapid transport of particulates from the near equatorial region to higher latitudes, while the equatorial high at upper regime (LS2) could be due to lofting and subsequent accumulation.  相似文献   

20.
Increase in the nighttime high-latitude nonthermal emissions in the mesosphere and lower thermosphere in the 4.3 and 15 μm CO2 bands during solar proton events has been estimated for the first time. The estimations have been performed for protons with energies not lower than 1 MeV precipitating into the atmosphere. A strong increase in the 4.3 μm emission can be anticipated during the above events; however, a substantial increase in the 15 μm emission is improbable. The 4.3 μm emission can increase only above approximately 80 km regardless of the energy of precipitating protons. The excitation of CO2 vibrational states, transitions from which generate the 4.3 μm emission, is caused by the vibrational excitation of N2 molecules due to collisions with secondary electrons, produced during solar proton events, and the following transfer of this excitation to CO2(0001) molecules during N2-CO2 collisions. Original Russian Text ? V.P. Ogibalov, S.N. Khvorostovskii, G.M. Shved, 2006, published in Geomagnetizm i Aeronomiya, 2006, Vol. 46, No. 2, pp. 159–167.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号