首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yanbin  Zhang  Fuyuan  Wu  Simon A.  Wilde  Mingguo  Zhai  Xiaoping  Lu  Deyou  Sun 《Island Arc》2004,13(4):484-505
Abstract   The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called 'Caledonian' granitoids), extending east–west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical 'Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285–116 Ma). This indicates that no 'Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma), Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin.  相似文献   

2.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

3.
Mesozoic basin evolution and tectonic mechanism in Yanshan, China   总被引:5,自引:0,他引:5  
The Mesozoic basins in Yanshan, China underwent several important tectonic transformations, including changes from a pre-Late Triassic marginal cratonic basin to a Late Triassic-Late Jurassic flexural basin and then to a late Late Jurassic-Early Cretaceous rift basin. In response to two violent intraplate deformation at Late Triassic and Late Jurassic, coarse fluvial depositional systems in Xingshikou and Tuchengzi Formations were deposited in front of thrust belts. Controlled by transform and extension faulting, fan deltas and lacustrine systems were deposited in Early Cretaceous basins. The composition of clastic debris in Late Triassic and Late Jurassic flexural basins respectively represents unroofing processes from Proterozoic to Archean and from early deposited, overlying pyroclastic rocks to basement rocks in provenance areas. Restored protobasins were gradually migrated toward nearly NEE to EW-trending from Early Jurassic to early Late Jurassic. The Early Cretaceous basins with a NNE-trending crossed over early-formed basins. The Early-Late Jurassic and Early Cretaceous basins were respectively controlled by different tectonic mechanisms.  相似文献   

4.
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo- Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo- Pacific slab at this time.  相似文献   

5.
The timing of the "Yanshanian Movement" and the tectonic setting that controlled the Yanshan fold-and-thrust belt during Jurassic time in China are still matters of controversy. Sediments that filled the intramontane basins in the Yanshan belt perfectly record the history of "Yanshanian Movement" and the tectonic background of these basins. Recognizing syn-tectonic sedimentation, clarifying its relationship with structures, and accurately defining strata ages to build up a correct chronostratigraphic framework are the key points to further reveal the timing and kinematics of tectonic deformation in the Yanshan belt from the Jurassic to the Early Cretaceous. This paper applies both tectonic and sedimentary methods on the fold-and-thrust belt and intramontane basins in the Zhangjiakou area, which is located at the intersection between the western Yanshan and northern Taihangshan. Our work suggests that the pre-defined "Jurassic strata" should be re-dated and sub-divided into three strata units: a Late Triassic to Early Jurassic unit, a Middle Jurassic unit, and a Late Jurassic to early Early Cretaceous unit. Under the control of growth fold-and-thrust structures, five types of growth strata developed in different growth structures: fold-belt foredeep type,thrust-belt foredeep type, fault-propagation fold-thrust structure type, fault-bend fold-thrust structure type, and fault-bend foldthrust plus fault-propagation fold composite type. The reconstructed "source-to-sink" systems of Late Triassic to Early Jurassic,Middle Jurassic and Late Jurassic to early Early Cretaceous times, which are composed of a fold-and-thrust belt and flexure basins, imply that the "Yanshanian Movement" in our study area started in the Middle Jurassic. During Middle Jurassic to early Early Cretaceous times, there have been at least three stages of fold-thrust events that developed "Laramide-type" basementinvolved fold-thrust structures and small-scale intramontane broken "axial basins". The westward migration of a "pair" of basement-involved fold-thrust belt and flexure basins might have been controlled by flat subduction of the western Paleo-Pacific slab from the Jurassic to the Early Cretaceous.  相似文献   

6.
Geodynamic evolution of Korea: A view   总被引:2,自引:0,他引:2  
Abstract Evidence for South Korean Palaeozoic geodynamic evolution is restricted to the Ogcheon Belt, which is a complex polycyclic domain forming the boundary between the Precambrian Gyeonggi Block to the northwest and the Ryeongnam Block to the southeast. Two independent sub-zones can be distinguished: the Taebaeksan Zone to the northeast and the Ogcheon Zone sensu stricto. The Taebaeksan Zone and Ryeongnam Block display characteristic features of the North China palaeocontinent. This domain remained relatively stable during the Palaeozoic. In contrast, the Ogcheon Belt s. s. is a highly mobile zone that belongs to the South China palaeocontinent and corresponds to a rift that opened during the Early Palaeozoic. In lowermost Devonian times, the rift basin was closed and the Ogcheon Belt was structured in a pile of nappes. From the lack of suture in the Ogcheon Belt it can be inferred that the Gyeonggi Block belongs to the South China palaeocontinent. Thus, the boundary between the North China and South China blocks should be located to the north of Gyeonggi Block, that is, in the Palaeozoic Imjingang Belt. From the Middle Carboniferous, sedimentation started again on a weakly subsiding paralic platform located in the hinterland of the Late Palaeozoic orogen of southwest Japan. In the Late Carboniferous, increasing subsidence recorded extensional tectonics related to the opening of the Yakuno Oceanic Basin (southwest Japan). In the Middle Permian, the end of marine influences in the platform and emplacement of terrestrial coal measures, may be correlated with the closure of the oceanic area and subsequent ophiolite obduction. In Late Permian to Early Triassic times, the Honshu Block (the eastern palaeomargin of the Yakuno Basin) collided with Sino-Korea. Post-collisional intracontinental tectonics reached the Ogcheon Belt in the Middle Triassic (Songnim tectonism). Ductile dextral shear zones associated with synkinematic granitoids were emplaced in the southwest of the belt. In the Upper Triassic, the late stages of the intracontinental transcurrent tectonics generated narrow intramontane troughs (Daedong Supergroup). The Daedong basins were deformed during two tectonic events, in the Middle (?) and Late Jurassic. The Upper Jurassic to Lower Cretaceous basins (Gyeongsang Supergroup), that are controlled by left-lateral faults, may have resulted from the same tectonic event.  相似文献   

7.
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of…  相似文献   

8.
The tectonic settings of the different stages of the magmatic activity in the middle-south section of the Da Hinggan Mts. are analyzed through measuring the isotopic ages of the Mesozoic volcano-plutonic rocks from this area, and thus the tectono-magmatic evolution series are consequently determined as the initial mantle upwelling marked by the Late Triassic invasion of basic-ultrabasic rocks containing mantle-source enclaves, middle-upper crust extension marked by intrusion of the Early-Middle Jurassic diobase dike swarms, dramatic ruption of the Late Jurassic trachitic volcanic rocks, the Early Cretaceous nonorogenic alkalic-subalkalic granite invasion and the formation of the basic dike swarms and basalts. It is thus inferred that the uprise of the Da Hinggan Mts. in the Mesozoic is closely reiated to the upwelling of the deep magma in the mantle upwarping settings. Project supported by the National Natural Science Foundation of China (Grant No. 249472143).  相似文献   

9.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt. They consist mainly of monzogranite and K-feldspar granite. There occur associations of early Yanshanian A-type granitoids (176 Ma-178 Ma) and bimodal volcanic rocks (158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts (177 Ma-178 Ma) in southern Hunan in the central sector of the belt. Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite, while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt. Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations. Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up, indicating that a new orogenic Wilson cycle is about to start. Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

10.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt.They consist mainly of monzogranite and K-feldspar granite.There occur associations of early Yanshanian A-type granitoids(176 Ma-178 Ma) and bimodal volcanic rocks(158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts(177 Ma-178 Ma) in southern Hunan in the central sector of the belt.Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite,while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt.Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations.Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up,indicating that a new orogenic Wilson cycle is about to start.Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

11.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

12.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling: Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

13.
This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.  相似文献   

14.
Rocks of Late Cretaceous, Early Jurassic and Late Triassic age, collected in northern Mexico yield the following pole positions: 169.3°E57.9°N (Cretaceous), 70.7°E76.0°N (?Jurassic) and 119.2°E76.4°N (?Late Triassic). The Triassic and Cretaceous poles are not significantly different from those class-A poles (Hicken et al., 1972) of the North American craton. It is therefore suggested that the North American craton may be traced south as far as 23°N and inferentially a further four degrees (to the Mexican volcanic belt).The results from the La Boca Formation are interpreted as indicating a much greater age (Late Precambrian-Early (Paleozoic) than is currently assigned to that formation.  相似文献   

15.
Tethyan ophiolites and Pangea break-up   总被引:6,自引:0,他引:6  
Abstract The break‐up of Pangea began during the Triassic and was preceded by a generalized Permo‐Triassic formation of continental rifts along the future margins between Africa and Europe, between Africa and North America, and between North and South America. During the Middle–Late Triassic, an ocean basin cutting the eastern equatorial portion of the Pangea opened as a prograding branch of the Paleotethys or as a new ocean (the Eastern Tethys); westwards, continental rift basins developed. The Western Tethys and Central Atlantic began to open only during the Middle Jurassic. The timing of the break‐up can be hypothesized from data from the oceanic remnants of the peri‐Mediterranean and peri‐Caribbean regions (the Mesozoic ophiolites) and from the Atlantic ocean crust. In the Eastern Tethys, Middle–Late Triassic mid‐oceanic ridge basalt (MORB) ophiolites, Middle–Upper Jurassic MORB, island arc tholeiite (IAT) supra‐subduction ophiolites and Middle–Upper Jurassic metamorphic soles occur, suggesting that the ocean drifting was active from the Triassic to the Middle Jurassic. The compressive phases, as early as during the Middle Jurassic, were when the drifting was still active and caused the ocean closure at the Jurassic–Cretaceous boundary and, successively, the formation of the orogenic belts. The present scattering of the ophiolites is a consequence of the orogenesis: once the tectonic disturbances are removed, the Eastern Tethys ophiolites constitute a single alignment. In the Western Tethys only Middle–Upper Jurassic MORB ophiolites are present – this was the drifting time. The closure began during the Late Cretaceous and was completed during the Eocene. Along the area linking the Western Tethys to the Central Atlantic, the break‐up was realized through left lateral wrench movements. In the Central Atlantic – the link between the Western Tethys and the Caribbean Tethys – the drifting began at the same time and is still continuing. The Caribbean Tethys opened probably during the Late Jurassic–Early Cretaceous. The general picture rising from the previous data suggest a Pangea break‐up rejuvenating from east to west, from the Middle–Late Triassic to the Late Jurassic–Early Cretaceous.  相似文献   

16.
Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed in this paper is that after the Late Paleozoic South Qinling lithosphere subducted northward and decoupled, the upper part of the lithosphere emplaced under the North Qinling and the lower part continuously subducted northward under the North China Block. In Early Mesozoic, the North Qinling Block obducted northward and the North China Block inserted into the Qinling orogenic belt in a crocodile-mouth shape.  相似文献   

17.
Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed i  相似文献   

18.
Paleontologic and radiometric dating of the accretionary prism and magmatic arc of southwestern Alaska reveal an history of episodic accretion and plutonism. Possible accretion events in the Triassic (220-195 m.y.) and Early Jurassic (184-176 m.y.) were followed by Middle Cretaceous (108-83 m.y.), earliest Paleogene (65-60 m.y.), Middle Paleogene (50-40 m.y.), and Neogene (25-0 m.y.) accretion episodes. Plutonic events, which alternate with the accretion events, occurred in the Early Jurassic (193-184 m.y.), Middle/Late Jurassic (176-145 m.y.), Late Cretaceous/Early Paleogene (83-50 m.y.), and Late Paleogene (38-26 m.y.). Episodicity of accretion events is an apparent cause of incomplete stratigraphic records in the accretionary prism and forearc basin.  相似文献   

19.
The Helong block, located in southeastern Jilin Province, was thought to be an Archean geological unit in the most northeast part of the North China Craton (NCC)[1,2]. Previous geological survey sug-gested that this block is mainly composed of two parts: Jinchengdong Archean metamorphic supracrustal rocks intruded by Archean TTG complex[3―5], and the Bailiping granite[6,7] distributed in the Shiliping-Bai- liping-Guangping area. Both of them were thought as the Jinchengdong (or Helong…  相似文献   

20.
Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China. North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid-low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics. its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late-Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late-Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia-NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°—8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors-like collision procedure that produced intensive compression in the eastern part of suturing zone between the NCB and YZB, in which continental crust subducted into the upper mantle in the Late Permian, and then the ultrahigh-pressure rocks extruded in the Late Triassic. Paleomagnetic data also indicate that three major blocks have been together clockwise rotating about 20° relative to present-day rotation axis since the Late Jurassic. It was proposed that Lahsa Block and India subcontinent successively northward subducted and collided with Eurasia or collision between Pacific/Philippines plates and Eurasia might be responsible for this clockwise rotating of Chinese continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号