首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative textural analyses including crystal size distributions (CSDs) provide insights into crystallisation kinetics of magmatic systems. Investigations of volcanic crystal textures often rely on greyscale variations on backscattered electron images to identify crystal phases, which must then be thresholded and/or traced manually, a laborious task, and investigations are typically restricted to a single crystal phase. A method is presented that uses energy-dispersive X-ray element maps to generate textural data. Each pixel is identified as a crystal phase, glass or vesicle according to relative chemical composition enabling concurrent acquisition of multiphase CSD, crystallinity and mineral mode data. Data processing is less time intensive for the operator but considerable instrument time is required to generate element maps. The method is applied to 17 dacite samples from the 1980–1986 and 3 from the 2004–2005 eruptive periods of Mount St. Helens volcano (USA) to provide quantitative insights into multiphase textural evolution. All of the CSDs are curved and concave-up in the standard CSD plot with curvature increasing with plagioclase content. To facilitate comparisons with previous studies, CSDs for microlites (<50?μm length crystals) are approximated as straight lines. The line intercepts and slopes provide information on n 0 (nucleation density) and characteristic length or (the product of growth rate (G) and residence time (τ)), respectively. These parameters, as well as the total groundmass crystallinity, show distinct differences between explosive deposits from summer 1980 and post-summer 1980 domes. Post-summer 1980 microlite n 0 values are mostly at the lower end of the range of those measured for summer 1980 samples. Total groundmass crystallinities during summer 1980 are between 10 and 30?vol.%, whereas post-summer 1980 crystallinity increases to between 39 and 51?vol.%. The range of n 0 values is similar to those previously published for Mount St. Helens but is consistently higher. of a May 1985 sample analysed in this study is approximately 2?μm higher compared with previously published data for the same sample when processed using similar methodologies. Groundmass crystallinity data show similar trends to those previously published for the 1980 to 1986 eruption, increasing sharply after summer 1980 then increasing more gradually during the dome-building phase of the eruption. The effects of varying L, the apparent crystal size, and crystal aspect ratio on resultant CSDs are also investigated. Whilst relative temporal variations in CSDs for a given dataset can be investigated, absolute values from different studies cannot be compared unless methods of data acquisition and processing are exactly the same.  相似文献   

2.
The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (∼ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (∼ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (∼ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.  相似文献   

3.
Two mineralogically and chemically distinct rhyolite magmas (T1 and T3) were syn-erupted from the same conduit system during the 21.9 ka basalt intrusion-triggered Okareka eruption from Tarawera volcano, New Zealand. High spatial resolution U–Th disequilibrium dating of zircon crystals at the ~ 3–5 μm scale reveals a protracted yet discontinuous zircon crystallization history within the magmatic system. Both magma types contain zircon whose interiors predate the eruption by up to 200 ka. The dominant age peak in the T1 magma is ~ 30 ka with subordinate peaks at ~ 45, ~ 75, and ~ 100 ka, whereas the T3 magma has a dominant zircon interior age peak at ~ 90 ka with smaller modes at ~ 35 and ~ 150 ka. These patterns are consistent with isolated pockets of crystallization throughout the evolution of the system. Crystal rim analyses yield ages ranging from within error of the eruption age to at least ~ 90 ka prior to eruption, highlighting that zircon crystallization frequently stalled long before the eruption. Continuous depth profiling from crystal rims inward demonstrates protracted growth histories for individual crystals (up to ~ 100 ka) that were punctuated by asynchronous hiatuses of up to 30 ka in duration. Disparate zircon growth histories can result from localized thermal perturbations caused by mafic intrusions into a silicic reservoir. The crystal age heterogeneity at hand-sample scale requires considerable crystal transport and mixing. We propose that crystal mixing was achieved through buoyancy instabilities caused by mafic magma flow through crystal mush. A terminal pre-eruptive rejuvenation event was capable of mobilizing voluminous melts that erupted, but was too short (< 102–103 years) to result in extensive zircon growth. The contrasting, punctuated zircon histories argue against closed-system fractional crystallization models for silicic magmatism that require protracted cooling times following a mostly liquid starting condition.  相似文献   

4.
The rate of Ostwald ripening of forsterite is experimentally measured in a haplobasaltic melt (SiO2–Al2O3–CaO–MgO). The goal of the experiments is to determine if the rate of Ostwald ripening is sufficient to affect textural development in crystallizing magmas of a basaltic composition. With preequilibrated charges, experiments were run isothermally so that all textural changes could be ascribed to Ostwald ripening. An increase of crystal size from 3.5 μm to 14 μm (in average) has been observed during 10 days. Glass compositions were identical in all charges, indicating that the observed increase in average crystal size is not the results of chemical disequilibrium but the results of Ostwald ripening. Due to the constraints on experimental duration, the rate-limiting process (i.e., diffusion control or reaction control) could not be determined. Our experimental results, however, demonstrate that the rate of Ostwald ripening in basaltic rocks is sufficient to be of fundamental importance in the development of textures in igneous rocks. These results strongly suggest that Ostwald ripening, as well as nucleation and crystal growth, should be considered in analyses of textures in igneous rocks.  相似文献   

5.
 The size, shape and orientation of plagioclase crystals have been quantified in a tuff and series of andesite lavas from the active Egmont volcano (Mt. Taranaki), New Zealand. Linear crystal size distributions (CSDs) show that if the magma had several components, then only one provided the crystals. The slope of the CSD indicates that the earliest lavas measured had a residence time of ∼50 years in the magma chamber for a growth rate of 10–11 cm/s. Subsequent lavas had slightly longer residence times (50–75 years), but the following series returned to 50-year residence times. The youngest magmas, from both Egmont summit and the parasitic Fantham's Peak, have the shortest residence times of ∼30 years. Variations in residence time may reflect changes in the magma chamber shape or depth, or the temperature of the surrounding rocks. Crystal shapes and zonation suggest that crystallization occurred in a bottle-shape magma chamber, and not in a narrow conduit. If future eruptions use the same magma chamber as the most recent eruptions, then a delay of approximately 30 years can be expected between refilling and eruption. Received: 25 October 1995 / Accepted: 19 April 1996  相似文献   

6.
The theory of crystal size distribution (CSD theory) is based on a steady-state population balance that monitors the flux of crystals growing into and out of specificed size categories in precipitating solutions. The conservation equation describing this balance permits crystal growth and nucleation rates to be determined directly from crystal size distribution data. In this investigation, it is shown that CSD analysis can alternatively be used to calculate the residence time of crystals in the system - or in volcanologic terms, the magma storage time prior to eruption - if the characteristic crystal growth rate can be independently determined or estimated. The crystal size data needed for storage time determinations are easily obtained from thin sections of glassy eruption samples and the mathematical calculations are relatively simple. Analysis of the errors inherent in this new technique predicts storage estimates accurate to within an order of magnitude.  相似文献   

7.
Massive, nearly holocrystalline dolerites from DSDP Hole 417D contain from 0.5 to 1.5% of granophyric patches composed mainly of Na-plagioclase and quartz. These patches are compositionally similar to other crystalline silicic rocks from oceanic spreading centers and differ from rarer abyssal silicic glasses. Crystalline varieties withSiO260wt.% generally haveNa/K>10, whereas silicic glasses have Na/K in the range 3–6. While crystal fractionation readily accounts for the Na2O and K2O contents of abyssal silicic glasses, both the 417D granophyres and other crystalline abyssal silicic rocks have much lower K2O than that predicted by any reasonable crystal-liquid fractionation model. We propose that high-temperature vapor phase transport is responsible for removal of potassium during late-stage crystallization of these rocks. This allows for the formation of cogenetic silicic glassy and crystalline rocks with greatly different Na/K ratios. These observations and interpretations lead to a more confident assignment of high Na/K silicic rocks of oceanic and ophiolitic environments to a cogenetic origin with basaltic oceanic crust.  相似文献   

8.
We propose that the fluid mechanics of magma chamber replenishment leads to a novel process whereby silicic magmas can acquire an important part of their chemical signatures. When flows of basaltic magma enter silicic magma chambers, they assume a ‘fingered' morphology that creates a large surface area of contact between the two magmas. This large surface area provides an opportunity for significant chemical exchange between the magmas by diffusion that is enhanced by continuous flow of silicic liquid traversing the basalt through thin veins. A quantitative analysis shows that a basaltic magma may thereby impart its trace-element and isotopic characteristics to a silicic magma. Depending on concentration differences and diffusion coefficients for the given components, this new mechanism may be as important as crystal fractionation and assimilation in producing the compositional diversity of silicic magmas. It may explain concentration gradients in silicic ash-flow tuffs and should be considered when interpreting the isotopic signatures of silicic rocks, even in the overt absence of mixing. For example, we show that, for several well studied, compositionally graded ash-flow tuffs, the concentrations and isotopic ratios of important geochemical tracers such as strontium could be largely due to this flow-enhanced diffusion process.  相似文献   

9.
We present sub-crystal-scale 238U–230Th zircon ages and 238U–230Th–226Ra plagioclase ages of bulk mineral separates from the Holocene (2.0–2.3 ka) eruptions of the Rock Mesa (RM) and Devil's Hills (DH) rhyolites at South Sister volcano, Oregon. We link these age data with sub-crystal trace-element analyses of zircon and plagioclase to provide insight into the subvolcanic system at South Sister, as an example of a small-volume continental arc volcano. Our results document the presence of coeval yet physically-distinct regions within the magma reservoir and constrain the timescales over which these heterogeneities existed. Zircons from the RM and DH dominantly record ages from 20 to 80 ka, with some grains recording ages > 350 ka, whereas plagioclase records 230Th–226Ra ages of 2.3–6.8 ka (RM) and 4.0–9.6 ka (DH-3) and a 238U–230Th age of 10 ± 34 ka (DH-3). We interpret zircons with ages < 350 ka as antecrysts inherited from a longer lived upper-crustal magma reservoir from which the rhyolites were generated, based on crystallization ages coeval with earlier periods of silicic volcanism at South Sister, the undersaturated nature of the RM and DH magmas with respect to zircon, and Ti-in-zircon temperatures consistent with low-temperature (< 815 °C) crystallization. In contrast, plagioclase ages are near the eruption age and dominantly preserve information about the recent (< 10 ka), higher-temperature evolution of the host magmas. Although zircon and plagioclase record different crystallization ages, each phase crystallized over the same time period in the RM compared to DH rhyolites. Linking these crystal age data with sub-crystal trace-element analyses demonstrates that zircon and plagioclase have distinct trace-element characteristics between eruptions, which require that the RM and DH crystals (and therefore magmas) were derived from distinct regions that had evolved independently for > 50 ka within a heterogeneous magmatic system and coexisted as physically-distinct, dominantly-liquid bodies prior to eruption. Thus, we favor a model where rhyolites are generated in independent batches by accumulation of evolved liquids in a heterogeneous, largely crystalline reservoir. Similarities in crystal age and chemical data to that at other young silicic systems (e.g., Mount St. Helens, Okataina Caldera Complex) suggest that this model may be more generally applicable to silicic magmas.  相似文献   

10.
Bubble growth in rhyolitic melts: experimental and numerical investigation   总被引:2,自引:0,他引:2  
 Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied experimentally and simulated numerically. Rhyolitic melts were hydrated at 150 MPa, 780–850  °C to uniform water content of 5.5–5.3 wt%. The pressure was then dropped and held constant at 15–145 MPa. Upon the drop bubbles nucleated and were allowed to grow for various periods of time before final, rapid quenching of the samples. The size and number density of bubbles in the quenched glasses were recorded. Where number densities were low and run duration short, bubble sizes were in accord with the growth model of Scriven (1959) for solitary bubbles. However, most results did not fit this simple model because of interaction between neighboring bubbles. Hence, the growth model of Proussevitch et al. (1993), which accounts for finite separation between bubbles, was further developed and used to simulate bubble growth. The good agreement between experimental data, numerical simulation, and analytical solutions enables accurate and reliable examination of bubble growth from a limited volume of supersaturated melt. At modest supersaturations bubble growth in hydrated silicic melts (3–6 wt% water, viscosity 104–106 Pa·s) is diffusion controlled. Water diffusion is fast enough to maintain steady-state concentration gradient in the melt. Viscous resistance is important only at the very early stage of growth (t<1 s). Under the above conditions growth is nearly parabolic, R2=2Dtρm(C0–Cf)/ρg until the bubble approaches its final size. In melts with low water content, viscosity is higher and maintains pressure gradients in the melt. Growth may be delayed for longer times, comparable to time scales of melt ascent during eruptions. At high levels of supersaturation, advection of hydrated melt towards the growing bubble becomes significant. Our results indicate that equilibrium degassing is a good approximation for modeling vesiculation in melts with high water concentrations (C0>3 wt%) in the region above the nucleation level. When the melt accelerates and water content decreases, equilibrium can no longer be maintained between bubbles and melt. Supersaturation develops in melt pockets away from bubbles and new bubbles may nucleate. Further acceleration and increase in viscosity cause buildup of internal pressure in the bubbles and may eventually lead to fragmentation of the melt. Received: 19 June 1995 / Accepted: 27 December 1995  相似文献   

11.
Previously unrecognized pulses of rhyolite volcanism occurred in the Salton Trough between 420 ± 8 ka and 479 ± 38 ka (2σ), based on high-spatial resolution U–Pb zircon geochronology. Presently, these rhyolite lavas, tuffs and shallow subvolcanic sills are buried to depths between ~ 1.6 and 2.7 km at ambient temperatures between 200 and 300 °C, and are overprinted by propylitic to potassic hydrothermal alteration mineral assemblages consisting of finely intergrown quartz, K-feldspar, chlorite, epidote, and minor pyrite. Alteration resistant geochemical indicators (whole-rock Nd-isotopes, zircon oxygen-isotopes) reveal that these rhyolites are derived from remelting of MORB-type crust that was chilled and hydrothermally altered by deep-circulating hydrothermal waters. U–Pb zircon dating confirms the presence of Bishop Tuff in well State 2-14 at ~ 1.7 km depth, approximately 5 km NE of the geothermal wells that penetrated the buried rhyolites. These results indicate accelerated subsidence towards the center of the Salton Trough, increasing from 2.2 mm/a to 3.8 mm/a. Based on these results, the present-day Salton Sea geothermal field is identified as a focus zone of episodic rhyolitic volcanism, intense heat flow and metamorphism that predates present-day geothermal activity and Holocene volcanism by at least ~ 400 ka.  相似文献   

12.
In-situ observation methods to investigate the physics involved in growth and dissolution processes of crystals in aqueous solution at ordinary temperature and pressure are described. The methods visualize insitu the phenomena relating to clustering of nanometer sized embryonic particles, the mass transport from bulk solution and from a crystal, the concentration gradient in the diffusion boundary layer and its distribution around a crystal, and spiral growth steps with height of one nanometer. The techniques measure at the nanometer scale the growth and dissolution rates of individual spiral growth hillocks and etch pits whose dislocation characters are identified in-situ.  相似文献   

13.
Here I present textural data (i.e., vesicularity, vesicle size distributions (VSD), plagioclase crystallinity, crystal size distributions (CSD), combined with fractal analyses of particle outlines) from a natural succession of alternating fall and surge deposits in the emergent Capelas tuff cone (Azores).The textural variation in the Capelas succession is surprisingly small considering the wide variety of fragmentation processes, vent activity and emplacement mechanisms that are characteristic of emergent eruptions. The plagioclase crystal content varies between 24 and 33 vol.%. CSD analyses of plagioclase show near-linear trends with a slight increase in time for the smallest crystal sizes (with surge deposits having more groundmass plagioclase when compared with fall deposits). This is consistent with crystallization induced by degassing and decompression at lower eruption rates. The vesicularities of the Capelas pyroclasts are more variable (18 to 59 vol.%), with VSDs displaying kinked trends characteristic of coalescence. This is especially evident in the fall deposits, and consistent with being formed in continuous uprush (jetting) with an overall shallow fragmentation level within the conduit. Bubble coalescence can also be identified in the surge deposits, although to a much lesser extent. The amount of bubble coalescence is negatively correlated with the amount of groundmass crystallization (i.e., plagioclase) in the Capelas deposits.A relatively broad range of fractal dimensions (with average Dbox = 1.744 and σ = 0.032) for the outlines of pyroclastic fragments emplaced by fall or as surges indicate that there is little difference in the fragmentation process itself at Capelas. In addition to this, the fact that the fractal dimensions for both the fall and surge end-members completely overlap suggests that shape modification due to abrasion and chipping of grain edges was minor during emplacement of base surges. These results are consistent with emergent eruptions, building tuff cones, to be a relatively low-energy phreatomagmatic landform (e.g., at least when compared with more energetic phreatomagmatic eruptions producing tuff rings and maar volcanoes).  相似文献   

14.
Quantitative measurements of crystal size distributions (CSDs) have been used to obtain kinetic information on crystallization of industrial compounds (Randolph and Larson 1971) and more recently on Hawaiian basalts (Cashman and Marsh 1988). The technique is based on a population balance resulting in a differential equation relating the population densityn of crystals to crystal sizeL, i.e., at steady staten =n o exp(–L/itG), wheren o is nucleation density,G is the average crystal growth rate, is the average growth time, and the nucleation rateJ =n o G. CSD (Inn vsL) plots of plagioclase phenocrysts in 12 samples of Mount St. Helens blast dacite and 14 samples of dacite from the 1980–1986 Mount St. Helens dome are similar and averageG = 9.6 (± 1.1) × 10–3 cm andn o = 1–2 × 106 cm–4. Reproducibility of the measurements was tested by measuring CSDs of 12 sections cut from a single sample in three mutually perpendicular directions; precision of the size distributions is good in terms of relative, but not necessarily absolute values (± 10%). Growth and nucleation rates for plagioclase have been calculated from these measurements using time brackets of = 30–150 years; growth ratesG are 3–10 × 10–12cm/s, and nucleation ratesJ are 5–21 × 10–6/cm3 s.G andJ for Fe-Ti oxides calculated from CSD data areG = 2–13 ± 10–13 cm/sec andJ = 7–33 × 10–5/cm3 s, respectively. The higher nucleation rate and lower growth rate of oxides resulted in a smaller average crystal size than for plagioclase. Sizes of plagioclase microlites (<0.01 mm) in the blast dacite groundmass have been measured from backscatter SEM photographs. Nucleation of these microlites was probably triggered by intrusion of material into the cone of Mount St. Helens in spring 1980. This residence time of 52 days gives minimum crystallization estimates ofG = 1–3 × 10–11 cm/s andJ = 9–16 × 1O3/cm3 s. The skeletal form of the microlites provides evidence for nucleation and growth at high values of undercooling (T) relative to the phenocrysts. A comparison of nucleation and growth rates for the two crystal populations (phenocrysts vs microlites) suggests that while growth rate seems to be only slightly affected by changes inT, nucleation rate is a very strong function of undercooling. A comparison of plagioclase nucleation and growth rates measured in the Mount St. Helens dacite and in basalt from Makaopuhi lava lake in Hawaii suggests that plagioclase nucleation rates are not as dependent on composition. Groundmass textures suggest that plagioclase microphenocrysts crystallized at depth rather than in the conduit, in the dome, or after extrusion onto the surface. Most of this crystallization appears to be in the form of crystal growth (coarsening) of groundmass microphenocrysts at small degrees of undercooling rather than extensive nucleation of new crystals. This continuous crystallization in a shallow magmatic reservoir may provide the overpressurization needed to drive the continuing periodic domebuilding extrusions, which have been the pattern of activity at Mount St. Helens since December 1980.  相似文献   

15.
A large number of uniform cone‐shaped dissolution pipes has been observed and studied in Quaternary coastal calcareous arenites in Apulia and Sardinia (Italy) and Tunisia. These cylindrical tubes have a mean diameter of 52·8 cm and are up to 970 cm deep (mean depth for sediment‐free pipes is 1·38 m). They generally have smooth walls along their length, are perfectly vertical and taper out towards their bottoms. Their development is not influenced by bedding nor fractures. Sometimes their walls are coated by a calcrete crust. Their morphology has been studied in detail and their relationships with the surrounding rocks and with the environment have been analysed. The perfectly vertical development is a clear evidence of their genesis controlled by gravity. The depth of the dissolution pipes can be described by an exponential distribution law (the Milanovic distribution), strongly suggesting they developed by a diffusion mechanism from the surface vertically downward. We believe dissolution pipes preferentially form in a covered karst setting. Local patches of soil and vegetation cause infiltration water to be enriched in carbon dioxide enhancing dissolution of carbonate cement and local small‐scale subsidence. This process causes the formation of a depression cone that guides infiltrating waters towards these spots giving rise to the downward growth of gravity‐controlled dissolution pipes. A change of climate from wetter phases to drier and hotter ones causes the formation of a calcrete lining, fossilizing the pipes. When the pipes become exposed to surface agents by erosion of the sediment cover or are laterally breached the loose quartz sand filling them may be transported elsewhere. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced an age range of 151.8±2.6- 142.8±1.8 Ma. This work put an accurate constraint on the formation age of the intrusives in the Tongling metallogenic cluster. These age data indicate that magmatic activity reached a peak during Late Jurassic. The intrusive sequence of magma is generally from quartz monzonite (porphyry) through monzonite to granodiorite to quartz monzodiorite to pyroxene monzodiorite to gabbro-diabase. The intrusives of different lithology differed in crystallization age, probably implying the intrusives in the Tongling area underwent an evolutional process of magma, which was closely related to geodynamical setting in the depths of the area. A dynamic model was presented for the origin of the igneous rocks in the study area as follows. The assembly between the Yangtze craton and the North China craton fini- shed at the end of T3, and then the stage of another compressional orogeny began in the Tongling area, i.e., Pacific dynamic system. Along with the subduction of the Izanagi plate underneath the Eurasian plate at J2-J3, NW-trending compression toward the East China continent was produced, and compres- sional deformation also took place, forming NE-trending fold and resulting in thickening of the crust in the Tongling area. High-density eclogite-facies rocks were produced in the low part of the crust, re- sulting in the delamination of mantle lithosphere and lower crust, and upwelling of materials in as- thenosphere. Decompression melting produced basaltic magma, and the materials in lower crust were heated by the underplating of the basaltic magma. Thus, melting of lower crust yielded granitic magma, which intruded along deep and large faults through various geological processes (J3-K1). The SHRIMP U-Pb zircon age of 151.8±2.6-142.8±1.8 Ma for intrusives in the Tongling area suggests that the de- lamination of lithosphere mantle and lower crust at least began at middle-late stage of Late Jurassic, resulting in sharp thinning of lithosphere and intense extension of middle-upper crust. Thus, a lot of decollements were produced between cover and cover, basement and cover, and middle and lower crust. This was structural layering or detachment of lithosphere in the Tongling area. Three concordant ages for old inherited cores of magmatic origin (747-823 Ma) indicated that there were obvious mag- matism in the Tongling area during Neoproterozoic, and a little more of the Neoproterozoic igneous source rocks participated in the formation of Mesozoic intrusives.  相似文献   

17.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

18.
The present study describes examinations of growth rate of calcium carbonate using seed crystals of different sizes in the range of 10 to 50 μm at concentrations in the range of 5 to 50 g·L?1. The rate constant related to the crystal surface per volume was found to be independend of the crystal size. The effect of temperature on the rate constant was described using the Arrhenius equation. The use of suspension of lime as precipitating agent leads to decrease of the rate constant compared to lime water. This effect can be explained by the dissolution of suspended calcium hydroxide particles. Using the presented conditions (SI0 = 2.8), no impact of iron and manganese ions was observed.  相似文献   

19.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

20.
The aim of the study was — besides the dating of metamorphic events — to evaluate the effects of multi-stage crystal growth, episodic and continuous Pb loss, and U gain on the discordant age patterns found for zircon populations of the polymetamorphic Baltimore Gneiss, the Precambrian basement in the Maryland Piedmont. Eight gneiss and migmatite samples were collected at two localities in the Phoenix and Towson dome, respectively. Their zircon populations were separated into twenty-three fractions of different size and optical appearance. A low-contamination method (T.E. Krogh, 1973) was used for the U-Pb analyses.Microscopy and electron-microprobe studies revealed internal heterogeneities of the zircon crystals: at least half of the grains of each population reflect more than one stage of crystal growth, with the last stage consisting of U-poor overgrowths (U: below 400 ppm, mostly below 200 ppm). Evidence for episodic U gain and overgrown material other than zircon has not been found. On a concordia diagram the “ages” obtained by upward extrapolations (1080 and 1180 m.y.) and downward extrapolations (421 and 455 m.y.) of the best-fit lines to the data points are in fair agreement with the geochronologic data found by other investigators and the probable times of metamorphic periods of Precambrian (Grenville) and early Paleozoic (Taconic) orogenies.Models of Pb loss by continuous diffusion cannot adequately explain the discordant age patterns: these are essentially the result of superposition of episodic Pb loss and zircon overgrowth during the Taconic (and Acadian?) metamorphisms. The zircon overgrowth appears to be present in all fractions, but its influence on the U-Pb systematics is generally not perceptible because it is overridden by the effect of episodic Pb loss. For the fractions showing the most discordant ages, the contribution of Pb loss to the discordancy was found to be at least 85 %.From the microscopic picture and the isotopic data, it appears that the bulk of the zircon substance crystallized during one or several high-grade metamorphisms accompanied by migmatization and granitization of the rocks in the course of the Grenville orogeny. Under consideration of zircon ages of Baltimore Gneiss rocks of Pennsylvania, the results point to a complex Grenville metamorphic history in the Maryland and Pennsylvania Piedmont, that lasted from at least 1200 m.y. until about 980 m.y. The granulite-facies metamorphism in the West Chester Prong, Pennsylvania, may be 50–200 m.y. younger than the metamorphic events in the gneiss domes of the Baltimore area. Although it seems that real differences exist with respect to the Precambrian ages of major zircon-forming events between the Phoenix and the Towson dome, the apparent difference of about 100 m.y. should be interpreted with caution, because it is impossible, so far, to evaluate quantitatively the influence of possibly much older inherited zircon components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号