首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Geochemical evidence shows that the silicic component of the widespread Ash Zone 1 in the North Atlantic is derived from a major ignimbrite-forming eruption which occurred at the Katla caldera in southern Iceland during the transition from glacial to interglacial conditions in Younger Dryas time. Both trace and major element evidence of the rhyolitic products excludes the Öræfajökull volcano as a source. The high-Ti basaltic component in the marine ash zone can also be attributed to contemporaneous eruption in the Katla volcanic complex. Dispersal of tephra from this event is primarily attributed to the generation of co-ignimbrite ash columns in the atmosphere, with ash fallout on both sea ice and on the ocean floor north and east of Iceland. Owing to the changing ocean circulation characteristics of the glacial regime, including suppression of the Irminger Current and a stronger North Atlantic Current, tephra was rafted on sea ice south into the central North Atlantic and deposited as dispersed Ash Zone 1. Sediments south of Iceland also show evidence of the formation of ash turbidites, generated either by the entrance of pyroclastic flows into the sea, or during discharge of jökulhlaups or glacier bursts from this subglacial eruption.  相似文献   

2.
A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyroclastic flows and the production of major co-ignimbrite ash fall. The first explosive event produced minor ash fall from phreatomagmatic explosions (F-1 layer). The second event was a Plinian eruption (F-2) correlated to the large explosion of 5 April 1815, which produced a column height of 33 km with an eruption rate of 1.1 × 108 kg/s. The third event occurred during the lull in major activity from 5 to 10 April and produced minor ash fall (F-3). The fourth event produced a 43-km-high Plinian eruption column with an eruption rate of 2.8 × 108 kg/s during the climax of activity on 10 April. Although very energetic, the Plinian events were of short duration (2.8 h each) and total erupted volume of the early (F-1 to F-4) fall deposits is only 1.8 km3 (DRE, dense rock equivalent). An abrupt change in style of activity occurred at end of the second Plinian event with onset of pyroclastic flow and surge generation. At least seven pyroclastic flows were generated, which spread over most of the volcano and Sanggar peninsula and entered the ocean. The volume of pyroclastic flow deposits on land is 2.6 km3 DRE. Coastal exposures show that pyroclastic flows entering the sea became highly fines depleted, resulting in mass loss of about 32%, in addition to 8% glass elutriation, as indicated by component fractionation. The subaqueous pyroclastic flows have thus lost about 40% of mass compared to the original erupted mixture. Pyroclastic flows and surges from this phase of the eruption are stratigraphically equivalent to a major ash fall deposit (F-5) present beyond the flow and surge zone at 40 km from the source and in distal areas. The F-5 fall deposit forms a larger proportion of the total tephra fall with increasing distance from source and represents about 80% of the total at a distance of 90 km and 92% of the total tephra fall from the 1815 eruption. The field relations indicate that the 20-km3 (DRE) F-5 deposit is a co-ignimbrite ash fall, generated largely during entrance of pyroclastic flows into the ocean. Based on the observed 40% fines depletion and component fractionation from the flows, the large volume of the F-5 co-ignimbrite ash requires eruption of 50 km3 (DRE, 1.4 × 1014 kg) pyroclastic flows.  相似文献   

3.
The stratigraphic succession of the Pomici di Avellino Plinian eruption from Somma-Vesuvius has been studied through field and laboratory data in order to reconstruct the eruption dynamics. This eruption is particularly important in the Somma-Vesuvius eruptive history because (1) its vent was offset with respect to the present day Vesuvius cone; (2) it was characterised by a distinct opening phase; (3) breccia-like very proximal fall deposits are preserved close to the vent and (4) the pyroclastic density currents generated during the final phreatomagmatic phase are among the most widespread and voluminous in the entire history of the volcano. The stratigraphic succession is, here, divided into deposits of three main eruptive phases (opening, magmatic Plinian and phreatomagmatic), which contain five eruption units. Short-lived sustained columns occurred twice during the opening phase (Ht of 13 and 21.5 km, respectively) and dispersed thin fall deposits and small pyroclastic density currents onto the volcano slopes. The magmatic Plinian phase produced the main volume of erupted deposits, emplacing white and grey fall deposits which were dispersed to the northeast. Peak column heights reached 23 and 31 km during the withdrawal of the white and the grey magmas, respectively. Only one small pyroclastic density current was emplaced during the main Plinian phase. In contrast, the final phreatomagmatic phase was characterised by extensive generation of pyroclastic density currents, with fallout deposits very subordinate and limited to the volcano slopes. Assessed bulk erupted volumes are 21 × 106 m3 for the opening phase, 1.3–1.5 km3 for the main Plinian phase and about 1 km3 for the final phreatomagmatic phase, yielding a total volume of about 2.5 km3. Pumice fragments are porphyritic with sanidine and clinopyroxene as the main mineral phases but also contain peculiar mineral phases like scapolite, nepheline and garnet. Bulk composition varies from phonolite (white magma) to tephri-phonolite (grey magma).  相似文献   

4.
The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km3 of phonolitic pyroclastic material (0.61 km3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 107 and 2.81 × 107 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.  相似文献   

5.
The 1875 rhyolitic eruption of Askja volcano in Iceland was a complex but well-documented silicic explosive eruption. Eyewitness chronologies, coupled with examination of very proximal exposures and historical records of distal deposit thickness, provide an unusual opportunity for study of Plinian and phreatoplinian eruption and plume dynamics. The ∼ 17 hour-long main eruption was characterized by abrupt and reversible shifts in eruption style, e.g., from ‘wet’ to ‘dry’ eruption conditions, and transitions from fall to flow activity. The main eruption began with a ‘dry’ subplinian phase (B), followed by a shift to a very powerful phreatoplinian ‘wet’ eruptive phase (C1). A shift from sustained ‘wet’ activity to the formation of ‘wet’ pyroclastic density currents followed with the C2 pyroclastic density currents, which became dryer with time. Severe ground shaking accompanied a migration in vent position and the onset of the intense ‘dry’ Plinian phase (D). Each of the fall units can be modeled using the segmented exponential thinning method (Bonadonna et al. 1998), and three to five segments have been recognized on a semilog plot of thickness vs. area1/2. The availability of very proximal and far-distal thickness data in addition to detailed observations taken during this eruption has enabled calculations of eruption parameters such as volumes, intensities and eruption column heights. This comprehensive dataset has been used here to assess the bias of volume calculations when proximal and distal data are missing, and to evaluate power-law and segmented exponential thinning methods using limited datasets.  相似文献   

6.
Large volcanic eruptions at dacitic or rhyolitic volcanoes often generate exceptional volumes of fine ash that mantles an area up to a million km2. These eruptions are characterized by extreme fragmentation of the magma and hence extraordinary dispersal of ash and are categorized as plinian, ultraplinian, or phreatoplinian events. Large-volume co-ignimbrites or co-plinian ashes are often produced by such eruptions. High fragmentation indices of > 90% are attributed to the violent eruption of silicic magma, especially if augmented by fuel-coolant reactions produced when abundant external water interacts with the magma. The present study documents a case where the fine ash (≤ 1 mm diameter) fall deposit related to the plinian phase of the eruption comprises the overwhelming bulk – about 87 wt.% of the eruptive products. This is another example demonstrating the predominance of a widespread, fine-grained, co-plinian ash which follows the initial coarser lapilli fall. Historical eruptions at two other Andean volcanoes Quizapu, (Chile) and Huaynaputina, (Peru), and at Santa Maria, (Guatemala) and Novarupta, (Alaska) produced similar ash fall sequences.  相似文献   

7.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.  相似文献   

8.
Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty 14C dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with substantial pumice discharge occurred in the 1st century, the 10th century, and in AD 1660. The ages of organic paleosols and charcoal from block-and-ash flow and fallout deposits indicate that these eruptions occurred near the end of 100 to 200 year-long cycles of discontinuous activity which was comprised of dome growth episodes and minor pumice fallouts. The first cycle took place from ~ AD 1 to 140. The second one developed during the 9th and 10th centuries, lasted 150–180 yr, and included the largest Plinian event, with a VEI of 5. The third, historic cycle, about 200 yr in duration, includes pyroclastic episodes around AD 1450 and AD 1500, explosive activity between AD 1566 and AD 1582, possible precursors of the 1660 eruption in the early decades of the 17th century, and finally the 1660 eruption (VEI 4). A fourth event probably occurred around AD 500, but its authenticity requires confirmation. The Plinian events occurred at the end of these cycles which were separated by repose periods of at least 300 yr. Older volcanic activity of similar type occurred between ~ 4000 and ~ 3000 yr BP.  相似文献   

9.
The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kuril-Kamchatka region occurred about cal. A.D. 240 from the Ksudach volcano. This catastrophic explosive eruption was similar in type and characteristics to the 1883 Krakatau event. The volume of material ejected was 18–19 km3 (8 km3 DRE), including 15 km3 of tephra fall and 3–4 km3 of pyroclastic flows. The estimated height of eruptive column is 22–30 km. A collapse caldera resulting from this eruption was 4 × 6.5 km in size with a cavity volume of 6.5–7 km3. Tephra fall was deposited to the north of the volcano and reached more than 1000 km. Pyroclastic flows accompanied by ash-cloud pyroclastic surges extended out to 20 km. The eruption was initially phreatomagmatic and then became rhythmic, with each pulse evolving from pumice falls to pyroclastic flows. Erupted products were dominantly rhyodacite throughout the eruption. During the post-caldera stage, when the Shtyubel cone started to form within the caldera, basaltic-andesite and andesite magma began to effuse. The trigger for the eruption may have been an intrusion of mafic magma into the rhyodacite reservoir. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland ice sheet.  相似文献   

10.
Quilotoa volcano, an example of young dacitic volcanism in a lake-filled caldera, is found at the southwest end of the Ecuador's volcanic front. It has had a long series of powerful plinian eruptions of moderate to large size (VEI = 4–6), at repetitive intervals of roughly 10–15 thousand years. At least eight eruptive cycles (labeled Q-I to Q-VIII with increasing age) over the past 200 ka are recognized, often beginning with a phreatomagmatic onset and followed by a pumice-rich lapilli fall, and then a sequence of pumice, crystal, and lithic-rich deposits belonging to surges and ash flows. These unwelded pyroclastic flows left veneers on hillsides as well as very thick accumulations in the surrounding valleys, the farthest ash flow having traveled about 17 km down the Toachi valley. The bulk volumes of the youngest flow deposits are on the order of 5 km3, but that of Q-I's 800 yr BP ash-fall unit is about 18 km3. In the last two eruption cycles water has had a more important role.  相似文献   

11.
The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend.  相似文献   

12.
El Chichón volcano consists of a 2-km wide Somma crater compound cone 0.2 Ma old with peripheral domes with a central crater reactivated several times during the Holocene. The most recent eruption at El Chichón occurred from March 28 to April 4, 1982, resulting in the worst volcanic disaster during historical times in Mexico, killing more than 2000 people and destroying nine towns and small communities. The volcanic hazard map of El Chichón is based on detailed field work that documented twelve eruptions during the last 8000 years, and computer simulations. To validate the results, computer simulations were first performed over pre-1982 topography mimicking the extent of the actual deposits produced and afterwards run over post-1982 topography. These eruptions have produced pyroclastic fall, surge, flow and lahar deposits. Pyroclastic flows have different volumes and Heim coefficients varying from 0.2 (pumice flows), to 0.15 (block-and-ash flows) and 0.10 (ash flows). Simulations using FLOW3D and TITAN2D indicate that pumice flows and block-and-ash flows can fill the moat area and follow main ravines up to distances of ca. 3 km from the crater, with no effect on populations around the volcano. On the other hand, more mobile ash flows related to column-collapse events can reach up to 4 km from the vent, but will always follow the same paths and still not affect surrounding populations. The energy-cone model was used to simulate the outflow of pyroclastic surges based on the 1982 event (H/L = 0.1 and 0.2), and shows that surges may reach some towns around the volcano.  相似文献   

13.
New volcanological studies allow reconstruction of the eruption dynamics of the Pomici di Mercato eruption (ca 8,900 cal. yr B.P.) of Somma-Vesuvius. Three main Eruptive Phases are distinguished based on two distinct erosion surfaces that interrupt stratigraphic continuity of the deposits, indicating that time breaks occurred during the eruption. Absence of reworked volcaniclastic deposits on top of the erosion surfaces suggests that quiescent periods between eruptive phases were short perhaps lasting only days to weeks. Each of the Eruptive Phases was characterised by deposition of alternating fall and pyroclastic density current (PDC) deposits. The fallout deposits blanketed a wide area toward the east, while the more restricted PDC deposits inundated the volcano slopes. Eruptive dynamics were driven by brittle magmatic fragmentation of a phonolitic magma, which, because of its mechanical fragility, produced a significant amount of fine ash. External water did not significantly contribute either to fragmentation dynamics or to mechanical energy release during the eruption. Column heights were between 18 and 22 km, corresponding to mass discharge rates between 1.4 and 6 × 107 kg s−1. The estimated on land volume of fall deposits ranges from a minimum of 2.3 km3 to a maximum of 7.4 km3. Calculation of physical parameters of the dilute pyroclastic density currents indicates speeds of a few tens of m s−1 and densities of a few kg m−3 (average of the lowermost 10 m of the currents), resulting in dynamic pressures lower than 3 kPa. These data suggest that the potential impact of pyroclastic density currents of the Pomici di Mercato eruption was smaller than those of other Plinian and sub-Plinian eruptions of Somma-Vesuvius, especially those of 1631 AD and 472 AD (4–14 kPa), which represent reference values for the Vesuvian emergency plan. The pulsating and long-lasting behaviour of the Pomici di Mercato eruption is unique in the history of large explosive eruptions of Somma-Vesuvius. We suggest an eruptive scheme in which discrete magma batches rose from the magma chamber through a network of fractures. The injection and rise of the different magma batches was controlled by the interplay between magma chamber overpressure and local stress. The intermittent discharge of magma during a large explosive eruption is unusual for Somma-Vesuvius, as well as for other volcanoes worldwide, and yields new insights for improving our knowledge of the dynamics of explosive eruptions.  相似文献   

14.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

15.
The February 1963 to January 1964 eruption of Gunung Agung, Indonesia’s largest and most devastating eruption of the twentieth century, was a multi-phase explosive and effusive event that produced both basaltic andesite tephra and andesite lava. A rather unusual eruption sequence with an early lava flow followed by two explosive phases, and the presence of two related but distinctly different magma types, is best explained by successive magma injections and mixing in the conduit or high level magma chamber. The 7.5-km-long blocky-surfaced andesite lava flow of ~0.1?km3 volume was emplaced in the first 26?days of activity beginning on 19 February. On 17 March 1963, a major moderate intensity (~4?×?107?kg?s?1) explosive phase occurred with an ~3.5-h-long climax. This phase produced an eruption column estimated to have reached heights of 19 to 26?km above sea level and deposited a scoria lapilli to fine ash fall unit up to ~0.2?km3 (dense rock equivalent—DRE) in volume, with Plinian dispersal characteristics, and small but devastating scoria-and-ash flow deposits. On 16 May, a second intense 4-h-long explosive phase (2.3?×?107?kg?s?1) occurred that produced an ~20-km-high eruption column and deposited up to ~0.1?km3 (DRE) volume of similar ash fall and pyroclastic flow deposits, the latter of which were more widespread than in the March phase. The two magma types, porphyritic basaltic andesite and andesite, are found as distinct juvenile scoria populations. This indicates magma mixing prior to the onset of the 1963 eruption, and successive injections of the more mafic magma may have modulated the pulsatory style of the eruption sequence. Even though a total of only ~0.4?km3 (DRE volume) of lava, scoria and ash fall, and scoria-and-ash pyroclastic flow deposits were produced by the 1963 eruption, there was considerable local damage caused mainly by a combination of pyroclastic flows and lahars that formed from the flow deposits in the saturated drainages around Agung. Minor explosive activity and lahar generation by rainfall persisted into early 1964. The climactic events of 17 March and 16 May 1963 managed to inject ash and sulfur-rich gases into the tropical stratosphere.  相似文献   

16.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   

17.
the Neapolitan Yellow Tuff (NYT) (12 ka BP) is considered to be the product of a single eruption. Two different members (A and B) have been identified and can be correlated around the whole of Campi Flegrei. Member A is made up of at least 6 fall units including both ash and lapilli horizons. The basal stratified ash unit (A1) is interpreted to be a phreatoplinian fall deposit, since it shows a widespread dispersal (>1000 km2) and a constant thickness over considerable topography. The absence of many lapilli fall units in proximal and medial areas testifies to the erosive power of the intervening pyroclastic surges. The overlying member B was formed by many pyroclastic flows, radially distributed around Campi Flegrei, that varied widely in their eruptive and emplacement mechanisms. In some of the most proximal exposures coarse scoria and lithic-rich deposits, sometimes welded, have been identified at the base of member B. Isopach and isopleth maps of fall-units, combined with the distribution of the coarse proximal facies, indicate that the eruptive vent was located in the NE area of Campi Flegrei. It is considered that the NYT eruption produced collapse of a caldera approximately 10 km diameter within Campi Flegrei. The caldera rim, located by geological and borehole evidence, is now largely buried by the products of more recent eruptions. Initiation of caldera collapse may have been contemporaneous with the start of the second phase (member B). It is suggested that there was a single vent throughout the eruption rather than the development of multiple or ring vents. Chemical data indicate that different levels of a zoned trachyte-phonolite magma chamber were tapped during the eruption. The minimum volume of the NYT is calculated to be about 50 km3 (DRE), of which 35 km3 (70%) occurs within the caldera.  相似文献   

18.
Two groups of poorly sorted ash-rich beds, previously interpreted as rain-flushed ashes, occur in the ca. AD 180 Hatepe Plinian pumice fall deposit at Taupo volcano, New Zealand. Two ash beds with similar dispersal patterns and an aggregate thickness of up to 13 cm make up the lowermost group (A). Group A beds extend 45 km north-east of the vent and cover 290 km2. In the southern part of the group A distribution area, a coarse ash to lapilli-size Plinian pumice bed (deposit B) separates the two group A beds. The scarcity of lapilli (material seen elsewhere from the still-depositing pumice fall) in group A beds indicates that they were rapidly transported and deposited. However, this rapid transportation and deposition did not produce cross-bedding, nor did it erode the underlying deposits. It is proposed that thick (>600 m) but dilute gravity currents generated from the collapsing outer margin of the otherwise buoyant Hatepe Plinian eruption column deposited the group A beds. The upper ash beds (group C) consist of one to seven layers, attain an aggregate thickness of 35 cm, and vary considerably in thickness and number of beds with respect to distance from vent. Group C beds contain variable amounts of ash mixed with angular Plinian pumices and are genuine rain-flushed ashes. Several recent eruptions at other volcanoes (Ukinrek Maars, Vulcan, Rabaul, La Soufrère de Guadeloupe and Soufrière, St Vincent) have produced gravity currents similar in style, but much smaller than those envisaged for group A deposits. The overloaded margins of otherwise buoyant eruption plumes generated these gravity currents. Laboratory studies have produced experimental gravity current analogues. Hazards from dilute gravity currents are considerable but often overlooked, thus the recognition of gravity current deposits will contribute to more thorough volcanic hazard assessment of prehistoric eruption sequences.  相似文献   

19.
Batur volcanic field (BVF) in Bali, Indonesia, underwent two successive caldera-forming eruptions, CI and CII (29,300 and 20,150 years b.p., respectively) that resulted in the deposition of dacitic ignimbrites. The respective ignimbrites show contrasted stratigraphies, exemplify the variability of dynamics associated with caldera-forming eruptions and provide insights into the possible controls exerted by caldera collapse mechanisms. The Ubud Ignimbrite is widespread and covers most of southern Bali. The deposits consist dominantly of pyroclastic flow with minor pumice fall deposits. The intra-caldera succession comprises three distinct, partially to densely welded cooling units separated by non-welded pyroclastic flow and fall deposits. The three cooling units consist of pyroclastic flow deposits only and together represent up to 16 distinct flow units, each including a thin, basal, lithic-rich breccia. This eruption was related to a 13.5×10 km caldera (CI) with a minimum collapsed volume of 62 km3. The floor of caldera CI is inferred to have a piecemeal geometry. The Ubud Ignimbrite is interpreted as the product of a relatively long-lasting, pulsating, collapsing fountain that underwent at least two time breaks. A stable column developed during the second time break. Discharge rate was high overall, but oscillatory, and increased toward the end of the eruption. These dynamics are thought to reflect sequential collapse of the CI structure. The Gunungkawi Ignimbrite is of more limited extent outside the source caldera and occurs only in central southern Bali. The Gunungkawi Ignimbrite proximal deposits consist of interbedded accretionary lapilli-bearing ash surge, ash fall, pumice lapilli fall and thin pyroclastic flow deposits, overlain by a thick and massive pyroclastic flow deposit with a thick basal lag breccia. The caldera (CII) is 7.5×6 km in size, with a minimum collapsed volume of 9 km3. The CII eruption included two distinct phases. During the first, eruption intensity was low to moderate and an unstable, essentially phreatomagmatic column developed. During the second phase, the onset of caldera collapse drastically increased the eruption intensity, resulting in column collapse. The caldera floor is believed to have subsided rapidly, producing a single, short-lived burst of high eruption intensity that resulted in the deposition of the uppermost massive pyroclastic flow.Editorial responsibility: T. Druitt  相似文献   

20.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号