首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
罗云山山前断裂带阶地调查研究及其构造意义   总被引:2,自引:1,他引:1  
罗云山山前断裂带位于山西临汾盆地西侧,控制着盆地的西界.对罗云山山前断裂带8条冲沟的阶地测量资料的研究表明:该断裂带冲沟发育T1~T5五级阶地.T1 阶地拔沟3m左右,T2 阶地拔沟8~10m,T3 阶地拔沟20m左右,T4 阶地拔沟30m左右,T5 阶地拔沟40~50m.阶地测年数据及断错地貌调查表明:罗云山山前断裂带在晚第四纪以来有过多次活动.晚更新世中晚期以来阶地的抬升速率为0.41 mm/a,全新世以来抬升速率为0.75mm/a.罗云山山前断裂带冲沟阶地从晚更新世中晚期到全新世抬升速率有逐渐增大的趋势,反映该断裂带自晚第四纪以来构造抬升作用逐渐加强,这与临汾盆地从晚更新世晚期到全新世沉降速率也有增大的趋势比较一致.  相似文献   

2.
王萍  卢演俦  陈杰 《地震地质》2004,26(4):716-726
对流经阿尔金断裂带东段的段家沙河、疏勒河和踏实河的阶地沉积物进行了细颗粒多测片红外释光(IRSL)测年,初步确定了晚第四纪各级阶地的形成年代和构造抬升速率。疏勒河在昌马盆地南缘发育7级阶地,光释光测年结果显示这些总高度超过100m的阶地可能主要形成于数万年以内,抬升速率约为2.5mm/a;照壁山峡谷疏勒河保留有5级阶地,大致形成于20万年前,阶地的抬升速率约为0.7mm/a;段家沙河在红柳峡上形成4级阶地,形成于距今7万年以来,其抬升速率约为06mm/a  相似文献   

3.
阿尔金构造系晚更新世中晚期以来的逆冲活动   总被引:5,自引:1,他引:5       下载免费PDF全文
在阿尔金构造系中,阿尔金走滑断裂具有逆冲分量。文中将阿尔金构造系的逆冲活动分为西、中、东3段描述。西段从阿依耐克至车尔臣河河口,阿尔金南缘断裂具有逆冲活动迹象,在山前发育了规模较小的逆冲断层,有较新的地貌面被错动;中段从车尔臣河河口至拉配泉一带,在阿尔金山北缘发育大规模的逆冲断层,有较新的地貌面被错动;东段从拉配泉至宽滩山,逆冲断层有2种形式,此段阿尔金北缘断裂有逆冲分量,同时在阿尔金山北缘及山前冲洪积扇上发育逆冲断裂。自晚更新世中晚期以来,中段及东段逆冲速率<2mm/a。中段西部江尕拉萨依地区自16kaBP以来逆冲速率约为0.33mm/a,中部米兰桥一带自32kaBP以来的逆冲速率约为1.42mm/a。东段最大的逆冲速率在近中部的团结乡,自约5.31kaBP以来达到约1.81mm/a,向东西两端有减小的趋势,在西部柳城子自约72.36kaBP以来的逆冲速率为0.57mm/a,而东端的红柳沟自约8.99kaBP以来仅为0.05mm/a。团结乡地区约自19kaBP以来,逆冲活动有增强的趋势  相似文献   

4.
祁连山作为青藏高原东北缘的重要造山带,是高原向NE方向扩展的最前缘,逆冲和褶皱作用是青藏高原向N扩展的重要构造变形方式。白杨河发育于祁连山内部,向N汇入前陆区酒西盆地。因此,可以通过白杨河阶地研究祁连山北缘的变形特征。通过对白杨河阶地的详细调查与测量,得到如下认识:1)白杨河阶地具有流域分段性,在地形陡变带及盆地内白杨河背斜区发育多级阶地。以阶地级数来说,以牛头山为界,上游发育2—3级阶地,下游发育4—5级阶地。2)从白杨河阶地纵剖面获得昌马断裂的垂直活动速率为(0.32±0.09)mm/a,地壳缩短速率为(0.12±0.09)mm/a;旱峡-大黄沟断裂T5形成以来(约13ka)没有垂直活动;老君庙背斜区T5阶地(约9ka)褶皱变形隆升量为(6.55±0.5)m,缩短量为(3.47±0.5)m,隆升速率为(1.23±0.81)mm/a,缩短速率为(0.67±0.44)mm/a;白杨河背斜开始活动时期约为300kaBP,其170ka以来的平均隆升速率约(0.21±0.02)mm/a,缩短速率为(0.14±0.03)mm/a;3)北祁连山地区在响应青藏高原向N扩展的过程中表现出2种不同的变形特征:在祁连山内部以剪切变形为主,表现为块体侧向挤出;而在祁连山北缘地形陡变带和酒西盆地内部以挤压变形为主,表现为地壳缩短和隆起,并且盆地内构造缩短变形量占总变形量的50%左右。  相似文献   

5.
昆黄运动是发生在中更新世时期青藏高原及其邻区一次重要的构造抬升事件,河流阶地及地层记录能够较好地反映这次构造事件。渭河陇西段第七级阶地沉积了104.5m厚的黄土,通过对其上覆黄土剖面的古地磁、粒度研究表明,此级阶地形成年代为距今870ka,阶地拔河高度说明自中更新世以来地面至少抬升了205m,其抬升速率约为0.2m/ka。这次构造事件在时间上与昆黄运动相一致,是对青藏高原强烈抬升的响应。  相似文献   

6.
乌鲁木齐河河谷地貌与天山第四纪抬升研究   总被引:5,自引:0,他引:5  
乌鲁木齐河谷出山口分布400多米厚的沙尔巧克砾石层, 是本段天山隆升形成的磨拉石建造. 一次扩大边界的构造抬升事件使沙尔巧克砾石层堆积终止, 于其前缘发生褶皱断裂, 并开始下切. 砾石层顶部测年表明, 这一时间发生于1148 kaBP, 应该是天山对青藏高原昆-黄运动的响应. 此后是河流反复切割和堆积的阶地形成时期, 共形成9级阶地. 运用ESR和TL测年技术, 第3级阶地与后峡至二营第2级阶地堆积于氧同位素6阶段, 5, 6级阶地分别堆积于338 ka和562~591 kaBP. 同位素12阶段发生最早的高望峰冰期.  相似文献   

7.
基于华山山前断裂1︰5万活动断层填图成果,对断裂沿线地层地貌、断层三角面、河流阶地、陡坎地貌以及典型断错剖面等进行了详细的研究。研究表明:1)华山山前断裂按几何结构、断错地貌表现分西段(蓝田—华县段)、中段(华县—华阴段)及东段(华阴—灵宝段)3段;2)西段及东段断裂错断了T_2阶地及马兰黄土,T_1阶地跨断裂连续,测年结果表明,T_2阶地形成于晚更新世中期,T_1阶地形成于全新世早期,由此得出西段及东段断裂在晚更新世有过活动,全新世以来活动弱或不活动;3)中段断错地貌显著,河谷两侧发育Ⅲ级阶地,跨断裂阶地均被错断,测年结果表明:T_1阶地形成于2~3kaBP,T_2阶地形成于6~7kaBP,T_3阶地形成于60~70kaBP,结合阶地陡坎高度,得出不同时段的平均垂直滑动速率:T_3—T_2时期0.4mm/a;T_2—T_1时期1.1mm/a;T_1以来1.6mm/a;4)中段在晚更新世晚期以来发生过多次活动,在石堤峪、沟峪等地见漫滩陡坎,结合文化层及炭样年龄,可知漫滩形成于距今400~600a,对比历史地震资料,漫滩陡坎应为华县1556年地震的遗迹;5)结合前人研究认为,公元1556年华县81/2级地震的发震构造为华山山前断裂及渭南塬前断裂,其它断裂是否参与有待进一步研究。  相似文献   

8.
龙门山断裂带位于青藏高原东缘与四川盆地交界处,构造位置非常重要,对中国西南地区地形地貌、地质构造以及地震的发生等影响深远。通过卫星影像解译以及野外调查,初步分析认为岷江在汶川-茂县断裂区段主要发育5级阶地。结合前人研究获得的阶地年龄,文中将T_1—T_5阶地年龄分别限定在3~10ka、约20ka、40~50ka、60ka和80ka。另外,通过对区域内断裂沿线的阶地、冲沟等地质地貌的野外调查,结合卫星影像解译和差分GPS测量等工作,认为汶川-茂县断裂在T_3阶地(40~50kaBP)形成后、T_2阶地(约20ka BP)形成前有过活动,而在T_2阶地形成以来不再活动。结合中央断裂、前山断裂均为全新世活动断裂的认识,推测龙门山断裂带的活动已转移到更靠近盆地的中央断裂和前山断裂上。  相似文献   

9.
华山山前断裂中段晚第四纪活动的地貌表现及响应   总被引:2,自引:1,他引:1  
调查了华山山前断裂中段(石堤峪-杜峪)晚更新世以来,尤其是全新世以来的断层构造地貌,讨论了它们的成因、特点及对断裂活动的响应关系。断层构造地貌主要包括:断层三角面、断层陡坎、洪积阶地、埋藏型洪积扇以及冲沟裂点。对各大沟峪峪口的洪积阶地进行了大比例尺微地貌测量,并在部分沟峪两侧沿断层崖陡坎及冲沟沟床布置了测线。结合T1、T2级洪积阶地位错测量结果及其14C年龄计算得到,华山山前断裂中段6000a-2000aB.P.的垂直滑动速率为1.485mm/a;2000aB.P.以来的垂直滑动速率为3.73mm/a。最后结合野外调查与理论认识,建立了正断层作用下洪积阶地与埋藏型洪积扇的演化模式。本研究结果支持华山山前断裂是1556年华县814级地震发震构造的观点。  相似文献   

10.
用岷江都江堰—汶川段晚第四纪阶地面的变形量估算了龙门山断裂带中段的滑动速率。岷江及其支流发育3级晚第四纪河流阶地,阶地面的年龄分别约为10,20,50kaBP。阶地纵剖面在茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂处有明显的垂直变形。断裂活动具有间歇性特点,晚第四纪以来有过3期活动,其起始时间分别为50,20,10kaBP。依据各级阶地面年龄和变形量估算的茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂晚第四纪逆冲滑动速率分别为0.5,0.6~0.3,0.2mm/a;据阶地走滑位错估算的茂汶-汶川断裂和北川-映秀断裂的晚第四纪右旋走滑速率均约为1mm/a。现代河床之下发育很厚的河流堆积物表明,龙门山的构造抬升经历了较为复杂的过程  相似文献   

11.
通过对阿尔金断裂带西段莫勒切河河口附近卫星影像解译、野外调查测量及地貌面样品年龄测定,利用宽谷阶地、堆积阶地获取构造隆升速率、构造变形方式及加积速率,并结合区域气候资料探讨该区阶地发育对气候变化的响应.莫勒切河出山口发育4级阶地(T<‘4>,T<‘3>,T<‘2>,T<‘1>),其中T<‘4>、T<‘3>为宽谷阶地,T...  相似文献   

12.
Walker Creek in Marin County, California is a coastal stream draining to Tomales Bay, which lies in the San Andreas Rift Zone. Its valley contains an alluvial fill with a basal gravel dated at 5000 years BP. In upstream parts of the watershed, channels are incised arroyo-like in the fill leaving the valley floor standing as a high terrace averaging 5·5 m (18 ft) high. Below this terrace is an inner terrace of historic age that stands 2·4 m (8 ft) above the streambed. The stratigraphy and morphology of this valley are seen in others nearby, and indicate that in the last half of Holocene time in this region a single episode of valley alluviation was followed by two episodes of valley cutting. The second episode of valley cutting is occurring in the present time. During the last 60 years the flow has become seasonal, the stream has incised 1·5 m (5 ft) below the inner terrace in upstream reaches, aggraded 1·2 m (4 ft) in downstream reaches, and extended its estuary. Incision upstream has begun to re-expose the bedrock valley floor and is associated with aggradation downstream that has caused the flood plain to overtop both terraces. This has decreased the stream's gradient. Using a stream that is currently effecting major changes in its valley and channel morphology, two aspects of hydraulic adjustment in fluvial systems are examined. The changes in the average slope of the longitudinal profile are small but measureable. Profile concavity has not changed measurably. The various profiles that have existed in Holocene time show that stream gradient can be, but is not necessarily, slightly adjusted during valley filling and cutting. Flow measurements at a high discharge show that the channel has begun to assume the hydraulic geometry of an ephemeral channel. Adjustments of depth, velocity, and roughness appear to be hydraulic adjustments in response to changing watershed conditions.  相似文献   

13.
Two major fluvial terrace surfaces, and four less significant surfaces, are identified by aerial photographic interpretation, field mapping and levelling on one c. 2 km long reach of the upper Bowmont Water, an upland stream draining the northern Cheviot Hills, Scotland. The oldest terrace surface remains undated. Cartographic, radiocarbon and palynological dating suggest that later terraces formed very recently, within the last 250 years, with the most prominent terrace fill having aggraded in the 18th century. Incision below this terrace surface is dated to approximately the end of the 18th century, correlated with channel trenching at other sites in the region. Detailed palaeoecological and documentary evidence is used to examine whether climatic or land-use changes might have instigated aggradation, and a link with increased precipitation and flooding during part of the ‘Little Ice Age’ is suggested.  相似文献   

14.
Field‐based palaeoflood event reconstruction has the potential to contribute to the development of our understanding of long‐term landscape evolution. However, the reconstruction of past flow event histories (magnitude and frequency) over long‐term (Quaternary) timescales is fraught with difficulties. Here we make a preliminary exploration of some of the practicalities of flood reconstruction from fluvial terrace archives using commonly available sedimentological and geomorphological observations from a field perspective. We utilize Manning and palaeostage indicators to reconstruct historic events that can be used as benchmarks for a lesser used competence based approach, which is applied to coarse‐grained strath terrace deposits. We evaluate the results against gauged records for extreme and catastrophic events that affected the same region in 1973 and 2012. The findings suggest that the competence approach is most effectively applied to terrace deposits if the channel geometry is taken into account when sampling both in cross‐section and in longitudinal section and calibrated against the sedimentology for palaeo‐flow depth. Problems can arise where constrictive channel geometries allow boulder jams to develop, acting as sediment traps for the coarsest material and leading to downstream ‘boulder starvation’. Useful sites to target for palaeoflood reconstruction, therefore, would be upstream of such constrictive reaches where the coarsest transportable bedload has been effectively trapped. Sites to avoid would be downflow, where the deposited material would poorly represent palaeoflood competence. Underestimation from maximum boulder preservation and limited section exposure issues would appear to outweigh possible overestimation concerns related to fluid density and unsteady flow characteristics such as instantaneous acceleration forces. Flood data derived from river terrace deposits suggests that basal terrace geometries and coarse boulder lags common to many terrace sequences are likely the result of extreme flow events which are subsequently filled by lesser magnitude flood events, in this environmental setting. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
与生长地层类似,在活动褶皱生长发育过程中形成的河流阶地堆积、阶地面与褶皱陡坎记录了褶皱发育的详细过程,其基本几何结构主要受控于下伏褶皱生长的机制与类型。文中讨论了简单膝折带迁移(恒定翼间角)生长断弯褶皱与断展褶皱、翼旋转(恒定翼长)滑脱褶皱、膝折带迁移滑脱褶皱、膝折带迁移-翼旋转联合作用以及弧形弯曲枢纽膝折带迁移褶皱作用下河流阶地的几何结构以及阶地面与下伏基座岩层间的角度关系,提出了这几类褶皱生长与河流阶地相互关系的运动学模型,同时考虑了河流加积和下切侵蚀作用对河流阶地最终几何结构的影响。在这些模型中,变形河流阶地和褶皱陡坎的基本几何结构既具有相似之处,也有截然不同之处。因此,通过对河流阶地和褶皱陡坎的细致填图、测量和测年,不仅可推断其下伏活动褶皱的生长变形机制,而且可以估算褶皱的隆升速率和控制褶皱生长的断层的滑动速率  相似文献   

16.
Effective river management strategies require an understanding of how fluvial processes vary both spatially and temporally. Here, we examine the natural range of variability in the Conejos River Valley, southern Colorado, through documentation of terrace morphostratigraphic and sedimentological characteristics as well as through investigation of sediment contributions from headwaters, hillslopes and tributary streams. Additionally, soil development and radiocarbon ages, together with local and regional paleoclimate reconstructions, were used to infer the range of processes acting in this system. Since de‐glaciation, the Conejos River has fluctuated between episodes of bedrock strath formation, aggradation and vertical incision. Morphostratigraphic relationships, soil development and radiocarbon ages enable us to propose a chronology for periods of alluvial deposition (around 8·9–7·6 ka, 5·5 ka and from 3·5 to 1·1 ka), separated by intervals of fluvial incision. We infer potential forcing mechanisms by utilizing multiple working hypotheses. Specifically, we discuss the potential for increases in sediment supply during periods of (1) para‐glacial adjustment, (2) climatic cooling, (3) increased frequency of climate change and (4) increased fire frequency or severity. We also consider the effects of changes in stream discharge and extreme storm occurrence. We conclude that combinations of these processes, operating at different times, have contributed to sediment mobilization since de‐glaciation. Stream and landform morphology also varies longitudinally due to the influence of remnant glacial topography. In particular, valley bottom overdeepening at tributary junctions has resulted in incision and strath formation into unlithified glacial deposits (i.e. fill‐cut terraces) rather than bedrock in some reaches. Overall, the Conejos fluvial system has varied significantly both temporally and spatially since de‐glaciation and appears to be sensitive to changes in sediment supply related to Holocene scale climate fluctuations. This natural range of variability must therefore be a key consideration in any future stream management policies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, we present direct field measurements of modern lateral and vertical bedrock erosion during a 2-year study period, and optically stimulated luminescence (OSL) ages of fluvial material capping a flat bedrock surface at Kings Creek located in northeast Kansas, USA. These data provide insight into rates and mechanisms of bedrock erosion and valley-widening in a heterogeneously layered limestone-shale landscape. Lateral bedrock erosion outpaced vertical incision during our 2-year study period. Modern erosion rates, measured at erosion pins in limestone and shale bedrock reveal that shale erosion rate is a function of wetting and drying cycles, while limestone erosion rate is controlled by discharge and fracture spacing. Variability in fracture spacing amongst field sites controls the size of limestone block collapse into the stream, which either allowed continued lateral erosion following rapid detachment and transport of limestone blocks, or inhibited lateral erosion due to limestone blocks that protected the valley wall from further erosion. The OSL ages of fluvial material sourced from the strath terrace were older than any material previously dated at our study site and indicate that Kings Creek was actively aggrading and incising throughout the late Pleistocene. Coupling field measurements and observations with ages of fluvial terraces can be useful to investigate the timing and processes linked to how bedrock rivers erode laterally over time to form wide bedrock valleys.  相似文献   

18.
熊坡背斜构造变形与蒲江-新津断裂活动特征   总被引:3,自引:0,他引:3  
熊坡背斜位于龙门山构造带东南端的成都盆地内,是龙门山逆冲推覆构造向前推挤进入盆地内部的一个主要变形区域,与其配套发育的断裂为蒲江-新津断裂,断裂与背斜褶皱之间在构造变形模式上表现出明显的一致性。在褶皱和断裂的构造变形和活动特征上,熊坡背斜南段表现为一种不对称的褶皱,向NE方向发展表现为较为宽缓的对称褶皱形态,卷入的地层主要是中生代及其以前的地层,对蒲江-新津断裂的地貌调查结果表明,断裂没有对该区域内广泛发育的冲沟Ⅰ级阶地产生影响,而对山前发育的相当于南河(岷江Ⅰ级支流)Ⅳ级阶地的洪积台地有明显的控制作用,说明断裂活动时间应该为第四纪早期,到第四纪晚期活动减弱或是趋于静止  相似文献   

19.
The geomorphologic structure in the southeastern Tibetan Plateau is one of the important indexes for the expansion and deep dynamic process of Tibet. There are two different understandings for the geomorphologic structure in the southeastern Tibetan Plateau, i.e. gradual change and abrupt change. The gradient model suggests a gradual topographic reduction towards southeast which is an important evidence for the lower crust channel flow. The abrupt model considers that the southeast boundary of the plateau shows an abrupt change of topography in a zone of 50~200km wide which is controlled by the Yarlung-Yulong fault system. Here, we describe the morphotectonic feature in detail of the Sichuan-Yunnan block on the southeast edge of the plateau through the digital elevation model(DEM)analysis, further review the structural controls on the geomorphologic structure by combining the tectono-thermochronology analysis, and evaluate the southeastward spreading mode of the plateau. The topographic arithmetic progression ranking by using the DEM of the Sichuan-Yunnan block reveals three geomorphologic steps gradually lowering from the northwest to southeast. The switching of hypsometric integral(HI)value and the anomaly of SL/K value(where SL is stream length-gradient index and K is altitude of the profile)of river systems all occur on the edge of terraces. The high terrace is located on the north of Muli-Yulong with average elevation~4 200m; the secondary level of terrace extends to the Yanyuan-Lijiang area with average elevation~3 000m; and the third level is the region between the Jinhe-Qinghe and Anninghe with average elevation~1 800m. Structure investigation reveals that all the topographic boundaries between different terraces are consistent with regional major faults. The Muli thrust fault and Yulong thrust fault control the southeast edge of the high terrace, the Jinhe-Qinghe thrust fault separates the second and third level of terrace. The coincidence between topography boundaries and faults suggests that the formation of the stepped geomorphology on the southeast edge of the plateau were induced by the fault activities, reflecting the fault-controlled southeastward stepped-expanding mode of the plateau. The fission-track(FT)dating of the granites at the hanging wall of the Yuling-Muli Fault reveals fast uplift during~27~22Ma BP, reflecting the major thrusting along the Yulong-Muli Fault, which is consistent with the early-stage activity (~30~25Ma BP) of the Longmenshan Fault. Therefore, the high terrace was formed during the Oligocene to early Miocene with the thrusting of the Yulong-Muli Fault. Tectono-thermochronology analysis also reveals the major thrusting of the Jinhe-Qinghe Fault occurred during~18~11Ma BP, indicating the middle terrace was formed in the middle Miocene, which also could correspond to the middle Miocene(~15~10Ma BP) activity of the Longmenshan Fault. Therefore, the thrusting faults controlled stepped terrace geomorphologic structure and the stepwise expanding mode under combined movements of large-scale thrusts and strike-slip faults at the southeast edge of Tibetan Plateau during the late Cenozoic do not support the lower crust channel flow model.  相似文献   

20.
The northeast margin of the Tibetan Plateau, a particularly important area to understand the mechanism of plateau formation, is characterized by large transpressional arcuate faults. There is debate on the amount of Quaternary sinistral displacement on the major Haiyuan Fault. Previously unrecognized systemic asymmetrical valleys have developed between the Haiyuan and Xiangshan faults. Southeast tilting and sinistral displacement on the northeast side of the Haiyuan Fault resulted in southeast migration of large rivers and asymmetrical widening of their valleys, leaving a systematic distribution of tilted strath terraces along their northwest sides. Where asymmetrical widening created by tilting kept pace with sinistral displacement, rivers have not been deflected, and the increase in valley width downstream from the fault should equate to total lateral displacement since river formation (e.g. Yuan River, a 7 km asymmetrical valley with a c. 2.2 Ma paleomagnetic age). Where river deflection and asymmetrical valley growth are coeval, valley width is less than total horizontal displacement (e.g. Hebao River, a c. 2.1 km asymmetrical valley with c. 2 km deflection). All rivers north of the Haiyuan Fault converge to cut across the Xiangshan Mountains as a gorge. Northeast thrusting of the upthrown side of the Xiangshan Fault has resulted in degradation and related strath terrace formation as the valleys asymmetrically widened. A probable earthquake‐induced landslide caused by movement on the Xiangshan Fault in latest Pleistocene blocked the gorge causing aggradation along all rivers and their tributaries. Deposition terraces were formed after the landslide dam was breached. Together with previous research on the Xiangshan Fault, it is concluded that there has been c. 7 km of Quaternary sinistral displacement on the Haiyuan and Xiangshan faults along the northeast margin of the Tibetan Plateau since the formation of rivers that intersect them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号