首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The major goals of this study were to determine stream bed sediment erosion/deposition rates, sediment age, percent ‘new’ sediment, and suspended sediment origin during two storm events of contrasting magnitudes (11.9 mm over 5 h and 58.9 mm over 39 h) using fallout radionuclides (excess lead 210 – 210Pbxs and beryllium 7 – 7Be) and link the nature and type of sediment source contributions to potential phosphorus (P) off‐site transport. The study was conducted in cropland‐dominated and mixed land use subwatersheds in the non‐glaciated Pleasant Valley watershed (50 km2) in South Central Wisconsin. Fine sediment deposition and erosion rates on stream beds varied from 0.76 to 119.29 mg cm?2 day?1 (at sites near the watershed outlet) and 1.72 to 7.72 mg cm?2 day?1 (at sites in the headwaters), respectively, during the two storm events. The suspended sediment age ranged from 123 ± 12 to 234 ± 33 days during the smaller storm event; however, older sediment was more prevalent (p = 0.037) in the streams during the larger event with suspended sediment age ranging from 226 ± 9 to 322 ± 114 days. During the small and large storm event, percent new sediment in suspended sediment ranged from 5.3 ± 2.1 to 21.0 ± 2.9% and 5.3 ± 2.7 to 6.7 ± 5.7%, respectively. In the cropland‐dominated subwatershed, upland soils were the major source of suspended sediment, whereas in the mixed land use subwatershed, both uplands and stream banks had relatively similar contributions to suspended sediment. In‐stream (suspended and bed) sediment P levels ranged from 703 ± 193 to 963 ± 84 mg kg?1 during the two storm events. The P concentrations in suspended and bed sediment were reflective of the dominant sediment source (upland or stream bank or mixed). Overall, sediment transport dynamics showed significant variability between subwatersheds of different land use characteristics during two contrasting storm events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An understanding of the temporal variation in reservoir sedimentation and identification of the main sources of sediment are necessary for the maintenance of sustainable reservoirs. For this purpose, field measurements, sampling, and fingerprinting of reservoir sediment were undertaken from July 2005 to November 2007. Source fingerprinting of reservoir sediment was conducted using cesium‐137 (137Cs). The relative contributions of gully bank and forest road, and forest floor material to reservoir sediment were calculated using a mixing model. Bank and forest road material, estimated to make up about 96% of the reservoir sediment, was the dominant source. Enormous reservoir sedimentation, which amounted to about 60% of the total reservoir sedimentation during the observation period, occurred during a heavy rainstorm with an 80‐year recurrence time. To maintain the sustainability of the reservoir in this study, therefore, temporal and spatial preparation strategies for heavy rainstorms and bank and forest road erosion should be considered. However, spatial information on sediment sources from 137Cs fingerprinting is limited. To better identify the sediment sources spatially and temporally, further studies applying soil erosion models and more detailed field studies are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The fundamental assumption of 210Pb sediment dating is the stable flux of 210Pbex, which was derived from atmosphere and then transferred into sediments via lake water. When the sedimentation rate is relatively constant, the 210Pbex activity in sediments will be exponentially reduced with sedimentation age. 210Pbex in lake water is incorporated into sediments mainly via organic particulates. If the sedimentation flux of organic matter in lake water is suddenly increased, 210Pbex will be significantly deposited and then transferred into sediments. On the one hand such sudden purification effect is obviously unfit for the fundamental assumption of 210Pb dating; on the other hand, the sudden enhancement of 210Pbex flux would be indicative of the conspicuous variation of primary productivity of lake water. This problem will be discussed in accordance with the variation trend of 210Pbex in the vertical profile of recent sediments of Lake Chenghai, Yunnan Province. The sediment core was collected from the deep-water area of Lake Chenghai in June 1997. The vertical profile of 137Cs activity is characterized by a tree-peak pattern. This profile gave reliable ages, and also showed the stability of sediment accumulation in the recent ten years. The vertical profile of 210Pbex activity displays a specific distribution of peaks, and is similar to the vertical profile of Corg. This phenomenon seems to be related to the mechanism of constraining the transfer of 210Pbex into lake sediments. The average atomic ratios of Horg/Corg and Corg/Norg in Lake Chenghai sediments are 5.51 and 7.04, respectively, indicating that the organic matter was predominantly derived from the remains of endogenic algae. In terms of the three-stage evolutionary characteristics of organic matter in sediments, i.e., “deposition-de-composition-accumulation”, the sedimentation fluxes (F(Corg)) of organic carbon (Corg) since 1970 were calculated by modeling. The sedimentation fluxes of 210Pbex (F(210Pbex)) in different years display good synchronous relations with the sedimentation flux of organic carbon (F(Corg)), especially in the years of 1972–1974 and 1986–1989. The variation of F(Corg) led to the variation of F(210Pbex); the variation of F(210Pbex) reflects, to some extent, the historical variation of lake productivity.  相似文献   

4.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This study describes the use of linearly modulated optically stimulated luminescence (LM‐OSL) to distinguish surface‐soil derived sediments from those derived from channel bank erosion. LM‐OSL signals from quartz extracted from 15 surface‐soil and five channel bank samples were analysed and compared to signals from samples collected from two downstream river sites. Discriminant analysis showed that the detrapping probabilities of fast, first slow and second slow components of the LM‐OSL signal can be used to differentiate between the samples collected from the channel bank and surface‐soil sources. We show that for each of these source end members these components are all normally distributed. These distributions are then used to estimate the relative contribution of surface‐soil derived and channel bank derived sediment to the river bed sediments. The results indicate that channel bank derived sediments dominate the sediment sources at both sites, with 90.1 ± 3% and 91.9 ± 1.9% contributions. These results are in agreement with a previous study which used measurements of 137Cs and 210Pbex fallout radionuclides to estimate the relative contribution from these two sources. This result shows that LM‐OSL may be a useful method, at least in the studied catchment, to estimate the relative contribution of surface soil and channel erosion to river sediments. However, further research in different settings is required to test the difference of OSL signals in distinguishing these sediment sources. And if generally acceptable, this technique may provide an alternative to the use of fallout radionuclides for source tracing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Fallout radionuclides, including lead‐210 excess (210Pbex), have been broadly and successfully used to quantify net hillslope sediment transport in agricultural, pastoral and forested landscapes but have only recently been applied in burned terrain. Quantifying post‐fire erosion is important because fires can amplify hillslope erosion, impacting terrestrial and aquatic habitat and water quality. However, we lack a basic understanding of the fate of 210Pbex in fires. To address this knowledge gap, we collected over 400 soil samples from unburned, moderately and severely burned forested sites in central Idaho. We measured soil 210Pbex content at stable reference and eroding sites and in mineral and organic soil components. At all sites, organic matter had the highest concentration of 210Pbex, representing 30% to 73% of the total activity. At the severely and moderately burned sites, 210Pbex reference inventories were lower by 58% and 41%, with about 40% less organic mass, relative to the unburned site. These results indicate that most 210Pbex in our semi‐arid, forested sites was bound to organic matter, and that a substantial portion of this lead was lost due to forest fires. These losses likely occurred through volatilization and wind transport of smoke and ash. In the moderately burned site, 210Pbex losses were more spatially variable, potentially due to spatially uneven fire intensity and effects. Despite equal percent losses of 210Pbex, lower inventories at the burned sites produced lower calculated net erosion rates relative to the unburned site. Thus, given methodological uncertainties, 210Pbex losses due to fire, and the subsequent sensitivity of calculated net erosion rates to these lower 210Pbex inventories, we suggest this method should not be used in burned terrain to calculate absolute net erosion and deposition rates. However, within a given burned site, 210Pbex inventories still provide useful information describing relative soil losses and storage across the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
湖泊沉积物储存着长时期的流域环境信息,是百年尺度湖泊环境演变研究的高分辨率记录器。本文通过210Pbex137Cs组合定年法,分析放射性核素剖面特征,研究沉积速率时空变化规律,并解析沉积物粒度指示的环境信息,揭示百年尺度湖泊沉积环境演变。结果表明:洞庭湖210 Pbex剖面分布呈现多段衰变型、混合—衰变—平衡型、衰变—本底型和无沉积型4种类型。3大湖体200 cm的沉积深度对应的年代跨度为127~162年,构建了洞庭湖沉积物深度—年代关系。洞庭湖平均质量沉积速率为1.47~3.11 g/(cm2·a),整体上呈现南洞庭湖>西洞庭湖>东洞庭湖的空间特征;自1900年后,质量沉积速率增加了3~7倍,呈时序增加趋势。沉积年代上,沉积物粒度特征表明洞庭湖沉积环境呈3个阶段2个过渡期的演变特征,与同时期区域内毁林开荒、水利建设、植树造林等人为活动有较好的对应关系,说明近百年来人为活动是洞庭湖泥沙沉积的重要因素。本研究结果可为强化湖泊及其流域生态环境保护...  相似文献   

8.
This paper examines the conservativeness of tracers through the sediment generation process. This is done by comparing a selection of tracer properties of sediment eroded from large plots by simulated rainfall, with the corresponding properties of the source materials within the plots. Sediment was generated using three simulated rainfall events for each of five selected erosion source types in the Tarago catchment, Victoria, Australia. As there were particle size and organic content differences between the source material and the generated sediment, the measured tracer properties of the source material were corrected for these differences. The possible role of analytical errors in this investigation was also addressed. The geochemical property, concentration of Fe2O3, was not conservative for any of the process sources investigated. Concentration of Al2O3 was not conservative for three of the four process sources investigated, and the sum of molecular proportions of CaO**, Na2O, K2O and Al2O3 was not conservative for two of the four process sources investigated. Mineral magnetic properties, IRM850 and χ were also found to be not conservative, although this may be the result of the complex relationship between particle size and mineral magnetic properties not being adequately accommodated in this analysis. The radionuclide tracers, 137Cs and 210Pbex, were found to be conservative through the sediment generation process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment yields estimated from contemporary stream monitoring of suspended sediment in the Merevale forested catchment, North Warwickshire, were compared with the sediment yield record obtained from analysis of lake sediment in the downstream reservoir. Total sediment volume and mass for nine periods since 1861 were calculated by extrapolation of synchronous levels in 54 cores, identified from magnetic susceptibility and other magnetic measurements, and by using 210Pb and 137Cs analysis to provide an absolute sediment chronology. Sediment yield estimated from the two methods show comparable but low (50-200 kg ha?1 yr?1) levels of sediment loss. While suggesting that lake sediments can be a useful means for extending the period over which contemporary monitoring exists, the study stresses the need for detailed historical records of land use and climate against which long term sediment yield records can be evaluated.  相似文献   

11.
Use of fallout radionuclides as indicators of erosion processes   总被引:1,自引:0,他引:1  
The different depth penetration characteristics of 137Cs, 7Be and 210Pb excess in undisturbed soils can be used to identify erosion processes by analysis of sediments derived from surface erosion. Caesium-137 concentrations (half-life 30 years) typically decrease to half the surface value at between 30 and 50 mm. Beryllium-7 (half-life 53 days) has half-penetration depths of between 0.7 and 10 mm, whereas 210Pb excess (half-life 20.2 years) has half-penetration depths between 10 and 30 mm. Experiments designed to determine the applicability of these depth penetration characteristics to soil erosion studies are reported. Surface runoff was artificially generated at two locations in a grazed paddock using a rainfall simulator. Suspended sediment was extracted from runoff and analysed for natural and artificial gamma emitting radio-nuclides. Suspended sediment derived from sheet flow contained initially high values of 137Cs, 7Be and 210Pb excess. As the experiment continued 137Cs concentrations remained high, but 7Be and 210Pb excess value decreased with time. This is interpreted as indicating a change from sheet dominated erosion to rill dominated erosion. During a second experiment artificial rain was allowed to fall onto an eroded gully wall. The derived suspended sediment contained no detectable 137Cs, 7Be or 210Pb excess. Overland flow from above the gully wall was then allowed to run down the gully face and mix with the water falling directly onto the gully wall. There was no detectable change in the radionuclide signature, showing that the gully wall was the predominant source of sediment. This was tested independently by mass balance and 226Ra to 232Th ratios. The good correlation between 210Pb excess and 7Be at this site suggests that the differential technique described here may be applicable over time-scales longer than are possible with 7Be. It may therefore be practical to examine catchment erosion history through analysis of 210Pb excess and 137Cs in sediment cores.  相似文献   

12.
The proportional contributions of stream bank and surface sources to fine sediment loads in watersheds in New York State were quantified with uncertainty analysis. Eroding streamside glacial drift, including glaciolacustrine deposits, were examined to help explain variations in the proportional contributions made by bank erosion. Sediment sources were quantified by comparing concentrations of the bomb‐derived radionuclide 137Cs in fluvial sediment with sediment from potential source areas such as agricultural soils, forest soils and stream banks. To compare sediment sources in streams containing abundant deposits of fine‐grained glacial drift with watersheds that lacked moderate or extensive streamside deposits, samples were taken from 15 watersheds in the region. The mean contribution of bank erosion to sediment loads in the six streams with glaciolacustrine deposits was 60% (range 46–76%). The proportional contribution of bank erosion was also important in one stream lacking glaciolacustrine deposits (57%) but was less important in the remainder, with contributions ranging from 0 to 46%. Data from this study on the varying contributions of bank erosion and data from past studies of sediment yield in 15 watersheds of New York State suggest that eroding streamside glacial deposits dominate sediment yield in many watersheds. In other watersheds, past impacts to streams, such as channelization, have also resulted in high levels of bank erosion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Fallout radionuclides (FRNs) 137Cs and 210Pb are well established as tracers of surface and sub‐surface soil erosion contributing sediment to river systems. However, without additional information, it has not been possible to distinguish sub‐surface soil erosion sources. Here, we use the FRN 7Be (half‐life 53 days) in combination with 137Cs and excess 210Pb to trace the form of erosion contributing sediment in three large river catchments in eastern Australia; the Logan River (area 3700 km2), Bowen River (9400 km2) and Mitchell River (4700 km2). We show that the combination of 137Cs, excess 210Pb and 7Be can discriminate horizontally aligned sub‐surface erosion sources (rilled and scalded hillslopes and the floors of incised drainage lines and gully ‘badland’ areas) from vertical erosion sources (channel banks and gully walls). Specifically, sub‐surface sources of sediment eroded during high rainfall and high river flow events have been distinguished by the ability of rainfall‐derived 7Be to label horizontal soil surfaces, but not vertical. Our results indicate that in the two northern catchments, erosion of horizontal sub‐surface soil sources contributed almost as much fine river sediment as vertical channel banks, and several times the contribution of hillslope topsoils. This result improves on source discrimination provided previously and indicates that in some areas erosion of hillslope soils may contribute significantly to sediment yield, but not as topsoil loss. We find that in north‐eastern Australia, scalded areas on hillslopes and incising drainage lines may be sediment sources of comparable importance to vertical channel banks. Previous studies have used the combination of 137Cs, excess 210Pb and 7Be to estimate soils losses at the hillslope scale. Here, we show that with timely and judicious sampling of soil and sediment during and immediately after high flow events 7Be measurements can augment fallout 137Cs and 210Pb to provide important erosion source information over large catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Bat guano deposits are increasingly used as records of past environmental changes, an approach that requires a precise chronology of the guano layers. This paper presents a comparison between the well-established 14C dating method and methods based on natural 210Pb excesses, (210Pb)ex, and artificial radionuclides 137Cs and 241Am. The studied example is a bat guano deposit from a cave in SW France (the Brantites III cave), which is currently investigated for paleo-environmental reconstructions using stable isotopes. 14C data show that the upper part of the guano deposit accumulated during the last 150 years with a marked increase in accumulation rates after around 1960 AD. While the incorporation of atmospheric 14C in guano is a well-understood process, the origin of 210Pb excesses is more complex. Based on consideration of 137Cs and (210Pb)ex inventories recorded in undisturbed soils in France, and the measured inventories in the guano deposit, we suggest that most of the 210Pb excess is produced by 222Rn decay in the cave air and then adsorbed onto the guano. As Radon concentrations in caves can vary significantly on both short and long-term timescales, one needs to be cautious before applying the often-used CRS (constant rate of supply of 210Pb excess) model to guano dating. Our (210Pb)ex data are best interpreted by two successive periods of roughly constant, but widely different accumulation rates (0.3 cm/y and 2.6 cm/y before and after 1960, respectively) and (210Pb)ex fluxes. We suggest that these relatively abrupt variations result from a change in cave ventilation leading to a more favourable shelter for bats after 1960. The upper 40 cm of the deposit shows evidence of 210Pb mobility, adding a further complexity to the interpretation of (210Pb)ex profiles in guano deposits. However, the existence of well-defined 137Cs and 241Am peaks allows a precise identification of the year of maximum atmospheric fallouts (∼1963–1964). When the ages provided by artificial radionuclides are combined with the 210Pb-derived accumulation rates, an age model can be built, which is in good agreement with the 14C age model. This example shows that the (210Pb)ex method, when associated with 137Cs (241Am) data, can be used to date recent guano deposit, although its application is not as straightforward as the 14C method.  相似文献   

16.
This study investigates erosion dynamics of the past 90 years in three small semi‐arid watersheds with histories of grazing and vegetation change. Activity of 137Cs and excess 210Pb from 18 cores collected from sedimentation ponds were measured using a gamma spectrometer. The sediment was dated using a constant rate of supply (CRS) model. This study represents the first time that reservoir sediment accumulation rates determined from fallout isotopes have been verified by direct volumetric measurements of aggradation based on topographic surveys. Measured sedimentation in the ponds ranged between 1.9 and 2.3 cm y?1, representing average sediment delivery rates from the watersheds of between 0.6 and 2.0 t ha?1 y?1. These sediment delivery rates were in agreement with those established by other methods for similar catchments in the region. Past variations in sedimentation rates were identified and correlated with recorded history of anthropogenic disturbance. 137Cs and 210Pb methods are suitable for use in arid environments and can complement each other to increase reliability of erosion rate estimates. The abundance of stock ponds in southwestern USA presents an opportunity to quantify historic erosion and sediment transfer dynamics in areas that have not been well studied or instrumented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

17.
The Stavropol region of southern Russia is severely affected by human‐induced gully erosion. A lack of detailed information on the different stages of gully formation resulting from major agricultural expansion c. 100 years ago, is an obstacle for management and containment of these systems. In this study we combine measurements of particle‐bound radionuclides (137Cs, 210Pbex, 226Ra, 232Th and 40K) and classical geomorphology to investigate and reconstruct the different phases of development of a gully during the last c. 100 years. We believe the ?rst phase (1) involved an initial incision into the bottom of a small valley (catchment area c. 1 km2) about 100 years ago. A short period of rapid growth was followed by a longer stage of gully stabilization. Subsequent phases were: (2) the period 1954–1960 – re‐incision in the lower gully reach was initiated by a high‐magnitude rainfall event, and a substantial amount of sediment was delivered to the gully fan; (3) c. 1960–1986 – the knickpoint retreated slowly, sediment was redeposited nearby, and the fan surface became stable; (4) 1986–1987 – a dam was built in the gully mouth and breached shortly after construction following 2 days of high rainfall, and substantial sediment accumulated in the gully above the dam and below the spillway channel on the fan surface; (5) 1987–1993 – the knickpoint retreat continued and the lower fan surface was stable until 1993 when the last signi?cant runoff event overlayed it with c. 10 cm of fresh sediment. These detailed reconstructions of gully development stages allow the contribution of high‐magnitude events to gully growth and regional sediment delivery to be assessed. They further guide management actions to prevent such dam failures in the future. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Sediment cores from central Lake Constance were dated with210Pb and137Cs. A sedimentation rate of (0.11±0.02) g·cm−2·y−1 was determined with the210Pb method.137Cs measurements revealed sedimentation rates of (0.11±0.01) g·cm−2·y−1 and (0.08±0.01) g·cm−2·y−1 respectively for two different cores sampled at the same location. The lower Cs-dated value indicates incomplete core recovery and demonstrates the sensitivity of this simple dating method to small losses of material at the water/sediment interface. An unambiguous application of the137Cs method is, therefore, only possible if complete core recovery is ensured. Sedimentation rates based on particulate matter, collected in sediment traps at various water depths, agree with the results of the radioisotope methods. Estimates of 30–125 days residence times for suspended particulate matter were calculated from7Be measurements.  相似文献   

20.
Contemporary patterns in river basin sediment dynamics have been widely investigated but the timescales associated with current sediment delivery processes have received much less attention. Furthermore, no studies have quantified the effect of recent land use change on the residence or travel times of sediment transported through river basins. Such information is crucial for understanding contemporary river basin function and responses to natural and anthropogenic disturbances or management interventions. To address this need, we adopt a process‐based modelling approach to quantify changes in spatial patterns and residence times of suspended sediment in response to recent agricultural land cover change. The sediment budget model SedNet was coupled with a mass balance model of particle residence times based on atmospheric and fluvial fluxes of three fallout radionuclide tracers (7Be, excess 210Pb and 137Cs). Mean annual fluxes of suspended sediment were simulated in seven river basins (38–920 km2) in south‐west England for three land cover surveys (1990, 2000 and 2007). Suspended sediment flux increased across the basins from 0.5–15 to 1.4–37 kt y‐1 in response to increasing arable land area between consecutive surveys. The residence time model divided basins into slow (upper surface soil) and rapid (river channel and connected hillslope sediment source area) transport compartments. Estimated theoretical residence times in the slow compartment decreased from 13–48 to 5.6–14 ky with the increase in basin sediment exports. In contrast, the short residence times for the rapid compartment increased from 185–256 to 260–368 d as the modelled connected source area expanded with increasing sediment supply from more arable land. The increase in sediment residence time was considered to correspond to longer sediment travel distances linked to larger connected source areas. This novel coupled modelling approach provides unique insight into river basin responses to recent environmental change not otherwise available from conventional measurement techniques. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号