首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
DET (diffusive equilibrium in thin films) gel probes were used for sampling river-bed sediment porewaters, to characterise in situ soluble reactive phosphorus (SRP) concentration profiles and fluxes. DET probes were deployed in three contrasting rural streams: (1) a headwater ‘pristine’ stream, with minimal P inputs from low intensity grassland and no point sources, (2) an intensively cultivated arable catchment, and (3) a stream subject to high P loadings from sewage effluent and intensive arable farming. The DET results showed highly enriched porewater SRP concentrations of between ca. 400 and 5000 μg-P l−1 in the sewage-impacted stream. In contrast, the arable and pristine streams had porewater SRP concentrations <70 μg-P l−1 and <20 μg-P l−1, respectively. Porewater SRP concentration profiles in both the sewage-impacted and arable-impacted streams showed well-defined vertical structure, indicating internal sources and sinks of SRP within the sediment. However, there was little variability in porewater SRP concentrations in the pristine stream. The DET porewater profiles indicated net diffusion of SRP (a) from the overlying river water into the surface sediment and (b) from subsurface sediment upwards towards the sediment–water interface. A mass balance for the sewage-impacted site showed that the influx of SRP into the surface sediments from the overlying river water was small (ca. 1% of the daily river SRP load). The DET results indicated that, in the arable and sewage-impacted streams, the surface ‘cap’ of fine sediment may play an important role in inhibiting upward movement of SRP from subsurface porewaters into the overlying river water, under steady-state, low-flow conditions.  相似文献   

3.
Porewater profiles often are used to identify and quantify important biogeochemical processes occurring in lake sediments. In this study, multiple porewater profiles were obtained from two eutrophic Swiss lakes using porewater equilibrators (peepers) in order to examine spatial and seasonal trends in biogeochemical processes. Variability in profile shapes and concentrations was small on spatial scales of a few meters, but the uncertainty in calculated diffusive fluxes across the sediment surface was, on average, 35%. Focusing of Fe and Mn oxides toward the lake center resulted in systematic increases in porewater concentrations and diffusive fluxes of Fe2+ and Mn2+ with increasing water depth; these fluxes are postulated to be regulated by the pH-dependent dissolution of reduced-metal phases. Despite higher concentrations of inorganic carbon, NH 4 + , Si and P in pelagic compared to littoral sites, diffusive fluxes of these substances across the sediment surface increased only slightly or not at all with increasing water depth. Porewater profiles did reveal temporal changes in Fe2+, Mn2+, Ca2+ and Mg2+ that were an indirect result of the large, seasonal changes in seston deposition, but no clear seasonal variations were found in diffusive fluxes of nutrients across the sediment surface. The intense mineralization occurring at the sediment surface was not reflected in the porewater profiles nor in the calculated diffusive fluxes. Calculated diffusive fluxes across the sediment surface resulted from decomposition occurring primarily in the top 5–7 cm of sediment. Diffusive fluxes from this subsurface mineralization were equal to the solute release from mineralization occurring at the sediment-water interface. Buried organic matter acts as a memory of previous lake conditons; it will require at least a decade before reductions in nutrient inputs to lakes fully reduce the diffusive fluxes into the lake from the buried reservoir of organic matter.  相似文献   

4.
Constructed wetlands are being utilized worldwide to effectively reduce excess nutrients in agricultural runoff and wastewater. Despite their frequency, a multi‐dimensional, physically based, spatially distributed modelling approach has rarely been applied for flow and solute transport in treatment wetlands. This article presents a two‐dimensional hydrodynamic and solute transport modelling of a large‐scaled, subtropical, free water surface constructed wetland of about 8 km2 in the Everglades of Florida, USA. In this study, MIKE 21 was adopted as the basic model framework. Field monitoring of the time series hydrological and chloride data, as well as spatially distributed data such as bathymetry and vegetation distribution, provided the necessary model input and testing data. Simulated water level profiles were in good agreement with the spatio‐temporal variations of measured ones. On average, the root‐mean‐square error of model calibration on annual water level fluctuations was 0·09 m. Manning's roughness coefficients for the dense emergent and submerged aquatic vegetation areas, which were estimated as a function of vegetation type, ranged from 0·67 to 1·0 and 0·12 to 0·15 s/m1/3, respectively. The solute transport model calibration for four monitoring sites agreed well with the measured annual variations in chloride concentration with an average percent model error of about 15%. The longitudinal dispersivity was estimated to be about 2 m and was more than an order of magnitude higher than the transverse one. This study is expected to play the role of a stepping stone for future modelling efforts on the development and application of more advanced flow and transport models applicable to a variety of constructed wetland systems, as well as to the Everglades stormwater treatment areas in operation or in preparation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Sediment flux in marsh tidal creeks is commonly used to gauge sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended‐sediment concentration (SSC), velocity and depth were measured near the mouths of two tidal creeks during three 6‐ to 10‐week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally averaged suspended‐sediment flux (SSF) in the tidal creeks varied from slightly landward to strongly bayward with increasing tidal energy. SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF for each deployment. During ebb tides following the highest tides, velocities exceeded 1 m s?1 in the narrow tidal creeks, resulting in negative tidally averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally averaged SSF was positive in wavy conditions with moderate tides. Spring tide sediment export at the creek mouth was about twice that at a station 130 m further up the tidal creek. The negative tidally averaged water flux near the creek mouth during spring tides indicates that in the lower marsh some of the water flooding directly across the bay–marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   

8.
Depth profiles of particle streamwise velocity, concentration and bedload sediment transport rate were measured in a turbulent and supercritical water flow. One‐size 6 mm diameter spherical glass beads were transported at equilibrium in a two‐dimensional 10% steep channel with a mobile bed. Flows were filmed from the side by a high‐speed camera. Particle tracking algorithms made it possible to determine the position, velocity and trajectory of a very large number of particles. Approximately half of the sediment transport rate was composed by rolling grains, and the other half by saltation. This revealed a complex structure, with several concentration and flux peaks due to rolling, and one peak due to saltation. With an increase of the sediment transport rate, the depth structure remained the same at the water/granular interface, with peak value increases but with no shift in elevations. The saltation region expanded towards higher elevations with an increase of the particle velocity commensurate to the water velocity. The proportion of the sediment transport rate in saltation did not vary significantly. The particle streamwise velocity profiles exhibited three segments: an exponential decay in the bed, a linear increase where rolling and saltation co‐existed, and above this, a logarithmic‐like shape due to saltating particles. These results are comparable to profiles measured and modelled in dry granular free surface flows and in more intense bedload such as sheet flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Compacted bentonites are being considered in many countries as a backfill material in high-level radioactive waste disposal concepts. A knowledge of the porewater chemistry in the clay barrier is essential since the porewater composition influences the release and transport of the radionuclides. However, quantification of the water chemistry in compacted bentonite under repository conditions is difficult. The methodology followed to obtain the porewater composition of the FEBEX bentonite is described in this paper. It is based on the characterisation of the solid phase, determination of the physico-chemical properties of the montmorillonite component and geochemical modelling. The FEBEX bentonite has a high cation exchange capacity (∼1 eq/kg), high surface area (∼725 m2/g total surface area and 62 m2/g external surface area) and accessory minerals such as carbonates, sulphates, pyrite, etc.; and organic matter. The chloride inventory in the FEBEX bentonite is ∼22 mmol/kg.The montmorillonite, together with the other mineral phases present, will determine the composition of the porewater. However, in order to calculate a unique aqueous chemistry, two further quantities are required, the chloride concentration and the pH.Water vapour adsoption/desorption isotherms, together with c-lattice spacing determinations, were used to identify the different states and location of water. Most of the water in the as received bentonite resides in the interlayer space. However, the measurements indicate that about 0.053 l/kg may be regarded as free water, implying a chloride concentration of 0.42 M. The pH of the system is fixed by equilibrium with the atmosphere (PCO2=10−3.5 bar) and saturation with the carbonate phases present. The porewater calculated to be in equilibrium with the as received FEBEX bentonite powder is a Na–Ca–Mg chloride type with a high ionic strength, 0.66 M, and a pH of ∼7.4.Likewise, in order to calculate the porewater composition of compacted re-saturated bentonite, the volume of free water is required. This value is taken to be the chloride accessible porosity obtained from Cl through-diffusion tests (due to anion exclusion, Cl anions can not move through the interlayer and overlapping double layer regions). The amount of free water in compacted bentonite determined in this manner was 0.03 l/kg at a dry density of ρd=1650 kg/m3. The corresponding chloride concentration is thus ∼0.73 M. Arguments are presented that the initial pH is fixed in the compacted material by the high buffering capacity afforded by the amphoteric edge sites, SOH sites, of the montmorillonite. The pH of the porewater depends directly on the speciation of these sites, i.e., the proportions of sites present as SOH, SOH2+, SO, and this is fixed in the powdered source material through equilibration with air (compaction will not alter the state of the SOH sites). The porewater of compacted FEBEX bentonite at ρd=1650 kg/m3 was calculated to be a Na–Ca–Mg chloride type with a high ionic strength, 0.90 M, and a pH of ∼7.4.  相似文献   

10.
This study investigates fluctuations in nitrate concentration at the water table to improve understanding of unsaturated zone processes in the Chalk aquifer. Sampling was conducted using a novel multi‐level sampler during periods of water table rise over 5 years at a vertical resolution of 0.05 m. Nitrate concentration increased as the water table seasonally recovered, with similar inter‐annual trends with depth. The rising water table activated horizontal fractures facilitating the delivery of water elevated by up to 10 mg/l of nitrate with respect to the adjacent groundwater below. These fractures are considered to activate via piston displacement of water from the adjoining matrix. Hydrograph analysis identified 16 events which significantly perturbed the water table within 24–48 h of rainfall. Consistent nitrate concentrations indicate recharge through persistent fracture flow from the surface was not generally the primary driver of the rapid water table response during these events. Instead, the response was attributed to the piston displacement of porewater immediately above the water table. However, a single event in November 2012 delivered relatively dilute recharge indicating rapid persistent fracture flow following rainfall was possible to a depth of 14–15 m. Decreases in porewater nitrate concentration around fracture horizons and the dilution of many groundwater samples with respect to porewaters indicate a fresher source of water at depth. This was considered most likely to be a result of near surface water bypassing the matrix because of widespread mineralization on fracture surfaces, which retard water and solute exchange. Therefore, persistent fracture flow maybe considered a frequent process, operating independently of the matrix, and is not necessarily event driven. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Resource extraction and transportation activities in subarctic Canada can result in the unintentional release of contaminants into the surrounding peatlands. In the event of a release, a thorough understanding of solute transport within the saturated zone is necessary to predict plume fate and the potential impacts on peatland ecosystems. To better characterize contaminant transport in these systems, approximately 13,000 L/day of sodium chloride tracer (200 mg/L) was released into a bog in the James Bay Lowland. The tracer was pumped into a fully penetrating well (1.5 m) between July 5 and August 18, 2015. Horizontal and vertical plume development was measured via in situ specific conductance and water table depth from an adaptive monitoring network. Over the spill period, the bulk of the plume travelled a lateral distance of 100 m in the direction of the slight regional groundwater and topographical slope. The plume shape was irregular and followed the hollows, indicating preferential flow paths due to the site microtopography. Saturated transport of the tracer occurred primarily at ~25 cm below ground surface (bgs), and at a discontinuous high hydraulic conductivity layer ~125 cm bgs due to a complex and heterogeneous vertical hydraulic conductivity profile. Plume measurement was confounded by a large amount of precipitation (233 mm over the study period) that temporarily diluted the tracer in the highly conductive upper peat layer. Longitudinal solute advection can be approximated using local water table information (i.e., depth and gradient); microtopography; and meteorological conditions. Vertical distribution of solute within the peat profile is far more complex due to the heterogeneous subsurface; characterization would be aided by a detailed understanding of the site‐specific peat profile; the degree of decomposition; and the type of contaminant (e.g., reactive/nonreactive). The results of this research highlight the difficulty of tracking a contaminant spill in bogs and provide a benchmark for the characterization of the short‐term fate of a plume in these complex systems.  相似文献   

13.
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of ‘interactive’ ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d−1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d−1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.  相似文献   

14.
This research (1) integrated a fluorescent dye injection and monitoring system for measuring the mixing of a fluorescent dye tracer (fluorescein) in permeable (sandy) sediments with a cabled ocean observatory, Kilo Nalu, Oahu, Hawaii, and (2) used this system to conduct remotely controlled in situ measurements of wave-enhanced porewater mixing in a physically well-characterized wave-dominated setting. Laboratory results indicated that the fiber-optic sensor is effective at measuring fluorescence-traced enhanced mixing in sandy sediments. Observed dye mixing, driven by paddle-generated surface waves in a laboratory wave channel was 2–3 orders of magnitude greater than molecular diffusion, and decreased with depth in the sediments. Similarly, field experiments used a remotely controlled submersible syringe pump for fluorescent tracer injection into sediment that was monitored with a fiber-optic sensor. These experiments were carried out at 10 m water depth, with mean wave heights of 0.3–1.5 m and periods of ∼15 s. At 15 cm sediment depth, transport rates of 0–5 cm h−1 were measured, with maximum dispersion coefficients 2–3 orders of magnitude faster than sedimentary molecular diffusion. Hydrodynamic measurements collected simultaneously via Kilo Nalu correlated with porewater transport, with significant wave height and diffusion having the strongest covariation.  相似文献   

15.
Increases in pool water and peat temperature in summer accelerate peat decomposition and production of biogenic gases, which can be trapped in peat pores and cause oscillation of peatland surfaces and the rise of peat from the bottom of bog pools. Associated changes in peat water conductivity, holding capacity and transpiration also affect bog hydrology. Our multi‐year study is the first to show in detail the extent and dynamics of changes in bog pool depth and bottom topography associated with changes in temperature, peat type and other factors. The true seasonal rise of peat from the pool bottom begins once the water temperature at the pool bottom exceeds 13–14 °C, although the speed and extent of the rise depends on peat properties, making the rise more erratic than its subsequent descent. The more rapid descent occurs after the first large drop in the temperature of the pool's surface water at the end of summer, resulting from the combination of reduced methane production and increased gas solubility with less influence by peat properties. Much higher dissolved organic carbon concentrations (216 ± 26 mg l?1) in the pore water of peat risen from the bottom to the pool surface compared with that in the same type of peat at the pool bottom (62 ± 20 mg l?1) indicate an acceleration of peat decomposition at the warmer pool surface. We show the extent and character of changes in pool depth and bottom topography and how annual differences relate to temperature. Only a few degrees' increase in pool water temperature could induce the pool bottom to rise faster and more extensively for a longer period and enhance decomposition in the peat at the pool surface. This should be evaluated in greater detail to assess the effects of temperature increase on the carbon budget and hydrology of peatlands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey’s SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice–water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison.  相似文献   

17.
Little is known about the processes of infiltration and water movement in the upper layers of blanket peat. A tension infiltrometer was used to measure hydraulic conductivity in a blanket peat in the North Pennines, England. Measurements were taken from the surface down to 20 cm in depth for peat under four different vegetation covers. It was found that macropore flow is a significant pathway for water in the upper layers of this soil type. It was also found that peat depth and surface vegetation cover were associated with macroporosity and saturated hydraulic conductivity. The proportion of macropore flow was found to be greater at 5 cm depth than at 0, 10 and 20 cm depth. Peat beneath a Sphagnum cover tends to be more permeable and a greater proportion of macropore flow can occur beneath this vegetation type. Functional macroporosity and matrix flow in the near‐surface layers of bare peat appear to have been affected by weathering processes. Comparision of results with rainfall records demonstrates that infiltration‐excess overland flow is unlikely to be a common runoff‐generating mechanism on blanket peat; rather, a saturation‐excess mechanism combined with percolation‐excess above much less permeable layers dominates the runoff response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

19.
Vegetation is a critical component of the ecogeomorphic feedbacks that allow a salt marsh to build soil and accrete vertically. Vegetation dieback can therefore have detrimental effects on marsh stability, especially under conditions of rising sea levels. Here, we report a variety of sediment transport measurements associated with an unexpected, natural dieback in a rapidly prograding marsh in the Altamaha River Estuary, Georgia. We find that vegetation mortality led to a significant loss in elevation at the dieback site as evidenced by measurements of vertical accretion, erosion, and surface topography compared to vegetated reference areas. Below-ground vegetation mortality led to reduced soil shear strength. The dieback site displayed an erosional, concave-up topographic profile, in contrast to the reference sites. At the location directly impacted by the dieback, there was a reduction in flood dominance of suspended sediment concentration. Our work illustrates how a vegetation disturbance can at least temporarily reverse the local trajectory of a prograding marsh and produce complex patterns of sediment transport. © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Fred Worrall  Simon Dixon 《水文研究》2013,27(26):3994-4003
Given the continuing concern about rising concentrations of dissolved organic carbon (DOC) in stream water leaving peat‐covered catchments, this study has considered the impact of managed burning or cutting of Calluna vulgaris, a dominant vegetation cover in many UK peatlands. Pristine mature Calluna stands were compared with those that had been subject to cutting and or managed burning up to 5 years after intervention. The study measured the DOC concentration of both soil and surface runoff water over a period of 12 months in comparison with water table depth, conductivity, and pH. The results show the following:

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号