首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PM2.5 is the key pollutant in atmospheric pollution in China.With new national air quality standards taking effect,PM2.5 has become a major issue for future pollution control.To effectively prevent and control PM2.5,its emission sources must be precisely and thoroughly understood.However,there are few publications reporting comprehensive and systematic results of PM2.5 source apportionment in the country.Based on PM2.5 sampling during 2009 in Shenzhen and follow-up investigation,positive matrix factorization(PMF)analysis has been carried out to understand the major sources and their temporal and spatial variations.The results show that in urban Shenzhen(University Town site),annual mean PM2.5 concentration was 42.2μg m?3,with secondary sulfate,vehicular emission,biomass burning and secondary nitrate as major sources;these contributed30.0%,26.9%,9.8%and 9.3%to total PM2.5,respectively.Other sources included high chloride,heavy oil combustion,sea salt,dust and the metallurgical industry,with contributions between 2%–4%.Spatiotemporal variations of various sources show that vehicular emission was mainly a local source,whereas secondary sulfate and biomass burning were mostly regional.Secondary nitrate had both local and regional sources.Identification of secondary organic aerosol(SOA)has always been difficult in aerosol source apportionment.In this study,the PMF model and organic carbon/elemental carbon(OC/EC)ratio method were combined to estimate SOA in PM2.5.The results show that in urban Shenzhen,annual SOA mass concentration was 7.5μg m?3,accounting for 57%of total organic matter,with precursors emitted from vehicles as the major source.This work can serve as a case study for further in-depth research on PM2.5 pollution and source apportionment in China.  相似文献   

2.
— Atmospheric particulate concentration for total suspended particles (TSP) and for PM10 (particulate matter under 10 micron) was measured in Jalan Braga and ITB campus, Bandung. Six samples were collected over one- or two-day time periods using High Volume Sampler (HVS) for TSP and Low Volume Sampler (LVS) or Anderson Cascade Impactor for PM10. Samples were further analyzed to determine concentrations of metals, sulfate and nitrate. Concentration of NOx (NO and NO2) was also measured hourly and simultaneously during the sampling period. The results from this study show that the atmospheric particulate concentration in Jalan Braga for TSP ranged from 304.04 to 363.17, and for PM10 concentration ranged from 277.02 to 336.44 μg/m3. The lead concentrations were 1.42–2.37 μg/m3 in the TSP and 0.81–1.57 μg/m3 in the PM10. The nitrate concentrations were 5.89–6.51 μg/m3 and 2.27–3.45 μg/m3 for the TSP and PM10, respectively. The hourly NOx concentration varied between 0.14–0.35 ppm. The total elements (metals, sulfate and nitrate) found in the samples contribute from 20 to 25% of the total particulate concentration.  相似文献   

3.
Particle hygroscopicity plays a key role in understanding the mechanisms of haze formation and particle optical properties. The present study developed a method for predicting the effective hygroscopic parameter k and the water content of PM_(2.5) on the basis of the k-K?hler theory and bulk chemical components of PM_(2.5). Our study demonstrated that the effective hygroscopic parameter can be estimated using the PM_(2.5) mass concentration, water-soluble ions, and total water-soluble carbon. By combining the estimated k and ambient relative humidity, the water content of PM_(2.5) can be further estimated. As an example, the k and water content of PM_(2.5) in Beijing were estimated utilizing the method proposed in this study. The annual average value of k of PM_(2.5) in Beijing was 0.25±0.09, the maximum k value 0.26±0.08 appeared in summer, and the seasonal variation is insignificant. The PM_(2.5) water content was determined by both the PM_(2.5) hygroscopicity and the ambient relative humidity(RH). The annual average mass ratio of water content and PM_(2.5) was 0.18±0.20, and the maximum value 0.31±0.25 appeared in summer. Based on the estimated water content of PM_(2.5) in Beijing, the relationship between the PM_(2.5) water content and RH was parameterized as: m(%)=0.03+(5.73×10~(-8)) ×RH~(3.72).This parametric formula helps to characterize the relationship between the PM_(2.5) mass concentration and atmospheric visibility.  相似文献   

4.
The climatic and environmental effects of atmospheric aerosols are a hot topic in global science community, and radiative properties of the aerosols are one of the important parameters in assessing climatic change. Here we studied the black carbon concentration and absorption coefficient measured with aethalometers, scattering coefficient measured with nephelometers, and single scattering albedo derived at an atmospheric composition watch station in Guangzhou from 2004 to 2007. Our main results are as follows. The data of black carbon concentration and absorption coefficients measured with instruments cannot be directly used until they are measured in parallel with internationally accepted instruments for comparison, calibration, and reduction. After evaluation of the data, the result shows that the monthly mean of BC concentration varies 3.1–14.8 μg·m−3 and the concentration decreases by about 1 μg·m−3 in average over the four years; It is higher in the dry season with a multi-year mean of 8.9 μg/m3 and lower in the rainy season with a multi-year mean of 8.0 μg·m−3; The extreme maximum of monthly mean concentration occurred in December 2004 and extreme minimum in July 2007, and a 4-year mean is 8.4 μg·m−3. It is also shown that monthly mean scattering coefficient derived varies 129 −565 Mm−1, monthly mean absorption coefficient 32–139 Mm−1, and monthly mean single scattering albedo 0.71–0.91, with annual mean values of 0.80, 0.82, 0.79 and 0.84 for 2004, 2005, 2006 and 2007, respectively. Three instruments were used to take simultaneous measurements of BC in PM10, PM2.5, and PM1 and the results showed that PM2.5 took up about 90% of PM10 and PM1 accounted for about 68% of PM2.5, and BC aerosols are mainly present in fine particulates. The variability of BC concentrations is quite consistent between the Nancun station (141 m above sea level) and the Panyu station (13 m above sea level), which are 8 km apart from each other. The concentration in higher altitude station (Panyu) is consistently lower than the lower altitude station (Nancun), and the difference of annual mean is about 4 μg·m−3. Supported by Natural Science Foundation of China (Grant Nos. U0733004, 40375002, 40418008, 40775011), National High Technology R & D Program of China (Grant Nos. 2006AA06A306 and 2006AA06A308) and National Basic Research Program of China (Grant No. 2005CB422207)  相似文献   

5.
The objective of the present study is the assessment of Jeddah ambient air quality in terms of PM2.5, and the associated lead 7 years after phasing out leaded gasoline in Saudi Arabia. Twenty‐four air samples were collected at four locations throughout Jeddah during the period from December 23, 2008 to April 6, 2009. The collected PM2.5‐samples were analyzed by ICP‐MS for determination of lead. The average atmospheric PM2.5 concentration was 50.8 µg/m3. Atmospheric PM2.5‐concentrations were higher than the 24‐h U.S. National Ambient Air Quality Standards (NAAQS) in 14 sample events. The average lead concentration for all samples was 0.07326 µg/m3. Atmospheric lead concentration was dependent on the sampling location. Concentrations at the two southern locations were higher than at the two northern locations. Southern locations had higher lead concentrations due to very high traffic density, in addition to their proximity to industrial zone. In general, the results of this study show a considerable decrease in atmospheric lead concentration 7 years after phasing out leaded gasoline. The study recommends further studies to accurately determine the current sources of atmospheric lead.  相似文献   

6.
Here we used Empirical Mode Decomposition(EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth(AOD/Hi) and corrected PM10 mass concentrations(PM10×f(RH)) in Hong Kong during 2005–2011. AOD/Hi is highly correlated with PM10×f(RH) in semi-annual and annual time scales(with correlation coefficient 0.67 for semi-annual and 0.79 for annual components, 95% confidence interval). On the semi-annual scale, both AOD/Hi and PM10×f(RH) can capture the two maxima in March and October, respectively, with much stronger amplitude in March probably due to the long-range transport of dust storm. On the annual cycle, the AOD/Hi and PM10×f(RH), which are negatively correlated with the precipitation and solar radiation, vary coherently with the maxima in February. This annual peak occurs about one month earlier than the first peak of the semi-annual variability in March, but with only half amplitude. During 2005–2011, both AOD/Hi and PM10×f(RH) exhibit the pronounced decreasing trend with the mean rate of 14 μg m–3 per year for PM10×f(RH), which reflects the significant effects of the air pollution control policy in Hong Kong during the past decade. The nonlinear trend analysis indicates that the decreasing of PM10×f(RH) is slower than that of AOD/Hi when the AOD/Hi is less than 0.44 but becomes faster when the AOD/Hi exceeds 0.44. These results illustrate that the AERONET AOD can be used quantitatively to estimate local air-quality variability on the semi-annual, annual, and long-term trend time scales.  相似文献   

7.
The prediction of PM2.5 concentrations with high spatiotemporal resolution has been suggested as a potential method for data collection to assess the health effects of exposure. This work predicted the weekly average PM2.5 concentrations in the Yangtze River Delta, China, by using a spatio-temporal model. Integrating land use data, including the areas of cultivated land, construction land, and forest land, and meteorological data, including precipitation, air pressure, relative humidity, temperature, and wind speed, we used the model to estimate the weekly average PM2.5 concentrations. We validated the estimated effects by using the cross-validated R2 and Root mean square error (RMSE); the results showed that the model performed well in capturing the spatiotemporal variability of PM2.5 concentration, with a reasonably large R2 of 0.86 and a small RMSE of 8.15 (μg/m3). In addition, the predicted values covered 94% of the observed data at the 95% confidence interval. This work provided a dataset of PM2.5 concentration predictions with a spatiotemporal resolution of 3 km × week, which would contribute to accurately assessing the potential health effects of air pollution.  相似文献   

8.
In this study, particulate matters (TSP, PM10, PM2.5 and PM10–2.5) which are hazardous for environment and human health were investigated in Erzurum urban atmosphere at a sampling point from February 2005 to February 2006. During sampling, two low volume samplers were used and each sampling period lasted approximately 24 h. In order for detection of representative sampling region and point of Erzurum, Kriging method was applied to the black smoke concentration data for winter seasons. Mass concentrations of TSP, PM10 and PM2.5 of Erzurum urban atmosphere were measured on average, as 129, 31 and 13 μg/m3, respectively, in the sampling period. Meteorological factors, such as temperature, wind speed, wind direction and rainfall were typically found to be affecting PMs, especially PM2.5. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations, but had a considerably negative induction on PM2.5 mass concentrations. However, combustion sourced PM2.5 was usually diluted from the urban atmosphere by the speed of wind, soil sourced coarse mode particle concentrations (TSP, PM10) were slightly affected by the speed of wind. Rainfall was found to be decreasing concentrations to 48% in all fractions (TSP, PM10, PM10–2.5, PM2.5) and played an important role on dilution of the atmosphere. Fine mode fraction of PM (PM2.5) showed significant daily and seasonal variations on mass concentrations. On the other hand, coarse mode fractions (TSP, PM10 and PM10–2.5) revealed more steady variations. It was observed that fine mode fraction variations were affected by the heating in residences during winter seasons.  相似文献   

9.
In this study, three approaches namely parallel, sequential, and multiple linear regression are applied to analyze the local air quality improvements during the COVID-19 lockdowns. In the present work, the authors have analyzed the monitoring data of the following primary air pollutants: particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). During the lockdown period, the first phase has most noticeable impact on airquality evidenced by the parallel approach, and it has reflected a significant reduction in concentration levels of PM10 (27%), PM2.5 (19%), NO2 (74%), SO2 (36%), and CO (47%), respectively. In the sequential approach, a reduction in pollution levels is also observed for different pollutants, however, these results are biased due to rainfall in that period. In the multiple linear regression approach, the concentrations of primary air pollutants are selected, and set as target variables to predict their expected values during the city's lockdown period.The obtained results suggest that if a 21-days lockdown is implemented, then a reduction of 42 µg m−3 in PM10, 23 µg m−3 in PM2.5, 14 µg m−3 in NO2, 2 µg m−3 in SO2, and 0.7 mg m−3 in CO can be achieved.  相似文献   

10.
The Nested Air Quality Prediction Model System(NAQPMS)was used to investigate the temporal and spatial variations of PM2.5over tropospheric central eastern China in January 2013.The impact of regional transport and its implications on pollution prevention and control were also examined.Comparison between simulated and observed PM2.5showed NAQPMS was able to reproduce the evolution of PM2.5during heavy haze episodes.The results indicated that regional transport of PM2.5played an important role in regional haze episodes in the city cluster including Hebei,Beijing and Tianjin(HBT).The cross-city clusters transport outside HBT and transport among cities inside HBT contributed 20%–35%and 26%–35%of PM2.5as compared with local emission,in HBT respectively.To meet the Air Quality Standards for Grade II,90%,90%and65%of emissions would have to be cut down in Hebei,Tianjin and Beijing,if non-control strategy was taken in the surrounding city clusters of HBT.This implicated that control of emissions in one city cluster is not sufficient to reduce regional haze events,and joint efforts among city clusters are essential.Besides regional transports,two-way feedback between boundary-layer evolution and PM2.5also significantly contributed to the formation of heavy hazes,which contributed 30%of monthly average PM2.5concentration in HBT.  相似文献   

11.
In this study, seven types of first‐order and one‐variable grey differential equation model (abbreviated as GM (1, 1) model) were used to forecast hourly roadside particulate matter (PM) including PM10 and PM2.5 concentrations in Taipei County of Taiwan. Their forecasting performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), root mean squared error (RMSE), and maximum correlation coefficient (R) was 11.70%, 60.06, 7.75, and 0.90%, respectively when forecasting PM10. When forecasting PM2.5, the minimum MAPE, MSE, RMSE, and maximum R‐value of 16.33%, 29.78, 5.46, and 0.90, respectively could be achieved. All statistical values revealed that the forecasting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) was an efficiently early warning tool for providing PM information to the roadside inhabitants.  相似文献   

12.
Tropospheric (ground‐level) ozone has adverse effects on human health and environment. In this study, next day's maximum 1‐h average ozone concentrations in Istanbul were predicted using multi‐layer perceptron (MLP) type artificial neural networks (ANNs). Nine meteorological parameters and nine air pollutant concentrations were utilized as inputs. The total 578 datasets were divided into three groups: training, cross‐validation, and testing. When all the 18 inputs were used, the best performance was obtained with a network containing one hidden layer with 24 neurons. The transfer function was hyperbolic tangent. The correlation coefficient (R), mean absolute error (MAE), root mean squared error (RMSE), and index of agreement or Willmott's Index (d2) for the testing data were 0.90, 8.78 µg/m3, 11.15 µg/m3, and 0.95, respectively. Sensitivity analysis has indicated that the persistence information (current day's maximum and average ozone concentrations), NO concentration, average temperature, PM10, maximum temperature, sunshine time, wind direction, and solar radiation were the most important input parameters. The values of R, MAE, RMSE, and d2 did not change considerably for the MLP model using only these nine inputs. The performances of the MLP models were compared with those of regression models (i.e., multiple linear regression and multiple non‐linear regression). It has been found that there was no significant difference between the ANN and regression modeling techniques for the forecasting of ozone concentrations in Istanbul.  相似文献   

13.
Abstract

The use of the bootstrap technique to estimate the reference level of137 Cs in an uneroded site is tested. The analysis is developed using 137Cs measurements made in a small experimental Sicilian basin. In the reference area the 137Cs activity is normally distributed with a known sample mean value, m equal to 94.4 mBq cm?2. The influence of137 Cs reference site sampling was determined generating samples having a fixed size, N and six different values of the sample coefficient of variation, CV, by a Monte Carlo technique. Then, for each size N, the probability distribution of the mean μ of the sequences generated by Monte Carlo technique is defined. The soil redistribution is determined, both at morphological unit and basin scale, using the proportional method of Martz & de Jong for calculating the net soil loss. The analysis showed that the spatial distribution of the net soil loss E i, and the basin value E b are independent of the sample size, N, and the coefficient of variation, CV, of the samples drawn from the reference area, if the bootstrap technique is applied for estimating the mean μ(μ) to use as reference value. The soil redistribution is also examined using as reference value the quantiles μ2.5, μ25, μ75, μ97.5 corresponding to a frequency F(μ) equal to 2.5, 25, 75 and 97.5%, respectively. In conclusion, the analysis established that a robust estimate of the reference value can be obtained even in fields where a small number of samples was drawn (high CV of the 137Cs activity of the field samples), using the bootstrap technique for generating sequences of reference values having known mean value m (the mean value of the 137Cs activity of the drawn field samples) and large sample size (N = 50).  相似文献   

14.
The plankton collected from three fish ponds shows a considerable variability within a pond, between the ponds and in the course of the year. The individual volumes or weights are (minimum—mean—maximum): Gleotrichia echinulata 41–252–879 μg3, Chlorella vulgaris 18–42–94 μm3, Oscillatoria amphigranulata 99–306–827 μm3, Brachionus plicatilis 1–4.918 μg, nauplia 0.5–1.25–2.35 μg, Mesocyclops hyalinus 4–45–369—μg, Heliodiaptomus viduus 41–202–288 μg, Daphnia carinata 186–1468–4578 μg.  相似文献   

15.
16.
An enzyme assay was developed for studies on peroxidase activities in humic lake water. 3,4-Dimethoxybenzyl alcohol (veratryl alcohol, VeraOH) was used as tracer substrate, and peroxidase (EC 1.11.1.7) activity was measured by high-performance liquid chromatography. The chemical stability of VeraOH and its application as peroxidase substrate was tested under light and dark conditions, different hydrogen peroxide (H2O2) concentrations and humic matter contents. VeraOH was stable under low UV radiation at in situ conditions in lake water (<0.010...0.25 kJ m–2 d–1), laboratory conditions (<0.05...0.30 kJ m–2 d–1), and low (1...100 μM) H2O2 concentrations. However, peroxides oxidized VeraOH above 1...10 mM H2O2 concentration in sterile Millipore-Q and humic lake water. Dark incubations showed little VeraOH oxidation products. The developed peroxidase assay was tested in the growth medium of Phanerochaete chrysosporium and a bacteria isolate (P.M.D. 20.4.3.1) from mesohumic lake Pääjärvi. Peroxidase activities were also measured in natural microbial communities under standard laboratory and under in situ conditions in humic lake water. Incubation times of about 5 to 12 days were usually needed to record significant (P < 0.05) peroxidase activities, in lake waters. In situ peroxidase activities varied in pelagial surface water (0...0.5 m) on a seasonal scale between 74 nmol L–1 h–1 and 273 nmol L–1 (mean: 176 nmol L–1 h–1) and within the water column between 110 nmol L–1 h–1 and 800 nmol L–1 h–1 (mean: 500 nmol L–1 h–1) in polyhumic lake Mekkojärvi.  相似文献   

17.
Particulate matter suspended in the River Severn (Shropshire, UK) consists chiefly of clay-sized mineral particles, together with living and dead micro-organisms (algae and bacteria). Its concentration depends strongly on discharge, but the particle size distribution shows no systematic variability. For most samples, the particle volume is log-normally distributed with respect to diameter, the mean diameter being ca. 9 μm. The particles are mainly aggregates, including some with linear dimensions of the order of tens or hundreds of micrometres. Particle density depends appreciably on size, decreasing from ca. 2.5 × 106 g m?3 at a diameter of 2.5 μm to ca. 1.3 × 106 g m ?3 at 20 μm. The collision efficiency factor for particle aggregation is estimated to be 0.01–0.03. At low discharge, the ‘dead zone’ in the River Severn at Leighton is a well defined region of stagnant water behind a gravel bar. The rate of deposition of fine particles on its bed is of the order of tens of grams per square metre per day. Resuspension requires a critical bed shear velocity of 0.03–0.04 m s?1, which occurs at main river discharges greater than about 150 m3 s?1. Under such conditions the gravel bar is underwater and the dead zone is a region of highly turbulent return flow. A simple mechanistic model of particle dynamics in the dead zone accounts reasonably well for particle accumulation rates when run with parameter values based on measured particle and hydraulic properties. Calculations with the model suggest that most of the sedimentation flux to the dead zone bed is due to particles with equivalent sphere diameters in the range 30–240 μm. Simulations indicate that deposition proceeded continuously during spring and summer, whereas repeated deposition and resuspension occurred in autumn and winter.  相似文献   

18.
This study investigated the effectiveness of a new packing material, namely mixed rice husk silica with dried activated sludge for removing H2S. Dried sewage sludge was collected from Putrajaya sewage treatment plant in Malaysia. Rice husk silica was prepared at temperature of 800°C, after acid leaching and mixed with dried sewage sludge to be utilized in a polyvinyl chloride filter. The system was operated under variable conditions of two parameters, different inlet gas concentration and different inlet flow rate. H2S was passed through the filter with one liter of the packing material. More than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 90–45 s and 300 ppm inlet concentration was observed. However, the RE decreased to 96.87% with the EBRT of 30 s. The maximum elimination capacity (EC) of 52.32 g/m3/h was obtained with the RE of 96.87% and H2S mass loading rate of 54 g/m3/h, while at the RE of 99.96%, maximum EC was 26.99 g/m3/h with the H2S mass‐loading rate of 27 g/m3/h. A strong significant correlation between increasing of H2S mass loading rate and pressure drop was also detected (p < 0.01). Maximum pressure drop was 3.0 mm H2O after 53 days of operating time, the EBRT of 30 s, and 54 g/m3/h of H2S loading rate. These observations suggest that the mixture of rice husk silica with dried activated sludge is a suitable physico‐biological filter for H2S removal.  相似文献   

19.
In this study, a new strain of microorganism Shewanella putrefaciens was used for biofiltration of a pyridine laden air stream in a corn‐cob packed biotrickling filter. In the biotrickling filter tested with S. putrefaciens, the maximum removal of pyridine is determined to be 100% at less than the average inlet concentration of 0.653 g m–3 and more than 93% at a higher average inlet concentration of 1.748 g m–3 (phase VIII) with an empty bed residence time (EBRT) of 106 s. However, when the biotrickling filter was operated at a low EBRT of 53 s and almost the same average inlet concentration of 1.752 g m–3 (phase VII), the removal level attained was not greater than 85%. The maximum elimination capacity (EC) of the biotrickling filter was 102.34 g m–3h–1 at an inlet pyridine load of 119.62 g m–3h–1 with an EBRT of 53 s in phase VII. The maximum deviation of the EC from the 100% conversion line varied from 0.257 to 10.166% when going from phase I to VIII. Kinetic analysis showed that the maximum removal rate, rmax, and saturation constant, Ks, values for pyridine were calculated as 0.24 g m–3h–1 and 6.44 g m–3, respectively, with a correlation coefficient, R2, of 0.9939 and a standard deviation of error of 23.94%. The information contained herein indicates that the corn‐cob packed biotrickling filter inoculated by S. putrefaciens should provide excellent performance in the removal of gaseous pyridine.  相似文献   

20.
The lake without any outlet (11 ha, 55000 m3, zmax 2,25 m) has a weak thermal stratification with maximum surface temperatures of 32.5 °C. The annual variation of temperature and depth of visibility is unimodal, with the maxima or minima in August. Phytoplankton consists mainly of Cyanophyceae. The primary production determined by the light-dark bottle technique (oxygen method) varies in the annual variation between 0.3… 0.5 g m?2 d?1 C (winter) and 3.4… 4.6 g m?2 d?1 C (summer); as the annual means of 1975 and 1976 there were found 1.9 and 2.4 g m?2 d?1 C, resp., gross production at a utilization of 0.42… 2.85% of the radiation energy. The chemism is a well-buffered hydrogen-carbonate water (pH 8.1… 9.0) with 74… 90 mg/1 Na and 20.5… 31.5 mg/1 K and with a good nutrient supply (20… 40 μg/1 PO4—P and 100… 240 μg/1 NO3—N) at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号