首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Particle–turbulence interaction has been a research focus in the field of pneumatic transport, especially in aeolian environments. However, knowledge regarding the effect of saltating particles on the turbulence characteristics is very limited. In this article, a process of sand-laden flow from forming sand streamers to stability is investigated via a coupled mathematical model of wind-blown sand that includes the spatiotemporal development. The variations in the turbulence characteristics, such as the mean velocity and turbulence intensity in clean air or sand-laden flow field, are analyzed. The results show that the splash process of sand grains near the wall decrease the wind speed in the saltation layer and destroy the low-speed streaks. Moreover, the profiles of streamwise turbulence intensity exhibit a transition from ‘decreasing’ to ‘increasing’ and approximately intersect at an ‘intensity focus’, which is presented for the first time. Furthermore, it was found that saltating particles could enhance the Reynolds stress. Meanwhile, it was also noticed that the shear stress at the wall surface is greater than the impact threshold and that there is a tendency towards the impact threshold. Therefore, saltation makes the particle Reynolds number of sand-laden flow higher than that under non-saltation conditions, thus changing the particles’ effect on the turbulence intensity. Gravity-dominated saltation is probably the most essential difference between wind-blown sand and other traditional two-phase flows. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
A model is developed for predicting the settling velocity in suspensions of particles of two different sizes based on experimental data for the settling rate of two-size suspensions in various liquids using particles of equal density. In these experiments, the retarding effect of the smaller particles on the settling velocities of the larger ones is taken into account. The model considers Steinour’s fundamental equation and assumes a fixed arrangement of particles and constant velocity in a single-size susp...  相似文献   

3.
Transporting capacity of overland flow on plane and on irregular beds   总被引:2,自引:0,他引:2  
In this paper the transporting capacity of thin flows, in the laminar and transitional flow regime, is studied. Experiments were carried out on irregular as well as on plane beds, using two totally different set-ups. The results of these two types of experiment were convergent. In both cases, sediment concentration was clearly related to grain shear velocity and unit stream power, expressed as the product of mean velocity and slope (Yang, 1973). The data agreed with those of Kramer and Meyer (1969). For a sandy bed, the unit stream power relationship was able to predict reasonably well the sediment concentrations measured on a mulched surface. For laminar and transitional flows, both the unit stream power and the shear velocity are related in the same way to slope and unit discharge. The unit stream power is a parameter which in particular can be very easily measured and might therefore become useful in obtaining a quick estimate of the transporting capacity of a thin flow. However, before a sediment transport equation for thin flows can be developed, more information is needed about the influence of the flow regime and grain size and density.  相似文献   

4.
A horizontal saltation layer of glass particles in air is investigated experimentally over a flat bed and also over a triangular ridge in a wind tunnel. Particle concentrations are measured by light scattering diffusion (LSD) and digital image processing, and velocities using particle image velocimetry (PIV). All the statistical moments of the particle concentration are determined such as mean concentration, root mean square concentration fluctuations, skewness and flatness coefficients. Over the flat bed, it is confirmed that the mean concentration decreases exponentially with height, the mean dispersion height being a significant length scale. It is shown that the concentration distribution follows quite well a lognormal distribution. Over the ridge, measurements were made at the top of the ridge and in the cavity region and are compared with measurements without the ridge. On the hill crest, particles are retarded, the saltation layer decreases in thickness and concentration is increased. Downwind of the ridge, particle flow behaves like a jet, in particular no particle return flow is observed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Although thin on the order of several to tens of millimeters, sheet flows normally comprise a lower pick-up sub-layer and an upper contact-load sub-layer, separated at the bed level (z = 0). The time-averaged concentration profile in the pick-up sub-layer shows a ‘convex upward’ curvature, but ‘concave upward’ shape characterizes the time-averaged concentration profile in the contact-load sub-layer. The time-dependent concentration in the contact-load sub-layer is approximately in-phase with the free stream flow velocity, whereas it is nearly in anti-phase with the free stream flow velocity in the pick-up sub-layer. Two distinct analytical expressions of the time-averaged concentration profiles for the respective sub-layers are proposed. The expressions are validated with detailed observation datasets collected in the Groβer Wellenkanal (GWK) prototype wave flume in Hannover, Germany. The agreement between the predicted and the measured values is excellent. Interparticle collisions in the pick-up sub-layer and convective lifting processes associated with vortex shedding in the contact-load sub-layer are considered responsible for the opposite curvatures and in-phase/anti-phase concentration variations. Both transitional boundary and reference concentration are also elaborated.  相似文献   

6.
The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.  相似文献   

7.
Three-dimensional saltating processes of multiple sediment particles   总被引:1,自引:1,他引:0  
The purpose of this study was to investigate the interacting mechanism between the saltating particles near a channel bed. A three-dimensional real-time flow visualization technique was developed to measure the interparticle collision behaviors during the saltating process. Based on the experimental data, the distribution of the collision points was found to be symmetric. This confirms the assumption that the projections of the collision points onto the reasonable plane are uniformly distributed. A three-dimensional saltating model was also developed. This model produced satisfactory results. The model is able to simulate the continuous saltating trajectories of several particles. The simulated dimensionless saltating height, longitudinal and vertical saltation velocity components were found to increase as the dimensionless particle diameter and the dimensionless flow transport capacity parameter increase, while the simulated lateral saltation velocity component varies inversely with the dimensionless flow transport capacity parameter. A regression equation for the bed load transport rate was also obtained.  相似文献   

8.
Abstract

A model of a homogeneous isotropic turbulent flow is presented. The model provides different realizations of the random velocity field component with given correlation latitudinal and lateral functions and a spatial structure which obeys the Kolmogorov theory of homogeneous and isotropic turbulence. For the generation of the turbulent flow the structural function of the flow in the form suggested by Batchelor (Monin and Yaglom, 1975) was used. This function describes the spectrum of turbulence both in the viscous and inertial ranges. The isotropy and homogeneity of the velocity field of the model are demonstrated.

The model is aimed at simulating the ‘‘fine'’ features of drop's (aerosol particles') motion, such as the deviations of drops’ velocity from the velocity of the flow, detailed structures of drops’ tracks, related to drops’ (particles') inertia. The model is intended also for the purpose of studying cloud drops’ and aerosol particles’ motion and their diffusional spreading utilizing the Monte Carlo methods.

Some examples of drop tracks for drops of different size are presented. Drops’ tracks are very sophisticated, so that the relative position of drops falling initially from the same point can vary drastically. In some cases drops’ tracks diverge very quickly, in other cases all drops move within a turbulent eddy along nearly the same closed tracks, but with different speed. The concentration of drop tracks along isolated paths is found in spite of the existence of a large number of velocity harmonics. It is shown that drops (aerosol particles) tend to leave some areas of the turbulent flow apparently due to their inertia. These effects can possibly contribute to inhomogeneity of drops’ concentration in clouds at different spatial scales.  相似文献   

9.
Depth profiles of particle streamwise velocity, concentration and bedload sediment transport rate were measured in a turbulent and supercritical water flow. One‐size 6 mm diameter spherical glass beads were transported at equilibrium in a two‐dimensional 10% steep channel with a mobile bed. Flows were filmed from the side by a high‐speed camera. Particle tracking algorithms made it possible to determine the position, velocity and trajectory of a very large number of particles. Approximately half of the sediment transport rate was composed by rolling grains, and the other half by saltation. This revealed a complex structure, with several concentration and flux peaks due to rolling, and one peak due to saltation. With an increase of the sediment transport rate, the depth structure remained the same at the water/granular interface, with peak value increases but with no shift in elevations. The saltation region expanded towards higher elevations with an increase of the particle velocity commensurate to the water velocity. The proportion of the sediment transport rate in saltation did not vary significantly. The particle streamwise velocity profiles exhibited three segments: an exponential decay in the bed, a linear increase where rolling and saltation co‐existed, and above this, a logarithmic‐like shape due to saltating particles. These results are comparable to profiles measured and modelled in dry granular free surface flows and in more intense bedload such as sheet flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The velocity of a wind‐blown sand cloud is important for studying its kinetic energy, related erosion, and control measures. PDA (particle dynamics analyser) measurement technology is used in a wind tunnel to study the probability distribution of particle velocity, variations with height of the mean velocity and particle turbulence in a sand cloud blowing over a sandy surface. The results suggest that the probability distribution of the particle velocity in a blowing sand cloud is stochastic. The probability distribution of the downwind velocity complies with a Gaussian function, while that of the vertical velocity is greatly complicated by grain impact with the bed and particle–particle collisions in the air. The probability distribution of the vertical velocity of ?ne particles (0·1–0·3 mm sands) can be expressed as a Lorentzian function while that of coarse particles (0·3–0·6 mm sands) cannot be expressed by a simple distribution function. The mean downwind velocity is generally one or two orders greater than the mean vertical velocity, but the particle turbulence in the vertical direction is at least two orders greater than that in the downwind direction. In general, the mean downwind velocity increases with height and free‐stream wind velocity, but decreases with grain size. The variation with height of the mean downwind velocity can be expressed by a power function. The particle turbulence of a blowing sand cloud in the downwind direction decreases with height. The variations with height of the mean velocity and particle turbulence in the vertical direction are very complex. It can be concluded that the velocity of a sand cloud blowing over a sandy surface is mainly in?uenced by wind velocity, grain impact with the bed and particle–particle collisions in the air. Wind velocity is the primary factor in?uencing the downwind velocity of a blowing sand cloud, while the grain impact with the bed and particle–particle collisions in the air are the primary factors responsible for the vertical velocity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The focus of this paper is on the analysis of the influence of particles’ velocity distribution and their concentration on the sediment transport rate in bed-load from the Lagrangian perspective.Such aims are addressed by use of the relevant Lagrangian model of spherical saltating particles in which turbulence plays a significant role.The Monte Carlo approach is employed in the simulations to obtain the velocity and concentration of the saltating particles.Numerical simulations using two saltating particle models:(1) with;and(2) without particle-particle collisions are carried out.Based on the numerical results,we address the hypothesis that instead of averaged characteristics,the distributions of particles’ velocity and sediment concentration should be taken into account in the calculation of sediment transport rate.Moreover,our results also show that the interaction between particles during their collisions is the key for better understanding of the physics of sediment transport.All results are compared with well-known experimental formulae i.e.Meyer-Peter and Muller and Fernandez Luque and van Beek.  相似文献   

12.
The acceleration of saltating grains by overland flow causes momentum to be transferred from the flow to the grains, thereby increasing flow resistance and bed roughness. To assess the impact of saltating sediment on overland flow hydraulics, velocity profiles in transitional and turbulent flows on a fixed sand-covered bed were measured using hot-film anemometry. Five discharges were studied. At each discharge, three flows were measured: one free of sediment, one with a relatively low sediment load, and one with a relatively high sediment load. In these flows from 83 to 90 per cent of the sediment was travelling by saltation. As a result, in the sediment-laden flows the near-bed velocities were smaller and the velocity profiles steeper than those in the equivalent sediment-free flows. Sediment loads ranged up to 87·0 per cent of transport capacity and accounted for as much as 20·8 per cent of flow resistance (measured by the friction factor) and 89·7 per cent of bed roughness (measured by the ratio of the roughness length to median grain diameter). It is concluded that saltating sediment has a considerable impact on overland flow hydraulics, at least on fixed granular beds. Saltation is likely to have a relatively smaller effect on overland flow on natural hillslopes and agricultural fields where form and wave resistance dominate. Still, saltation is generally of greater significance in overland flow than in river flow, and for this reason its effect on overland flow hydraulics is deserving of further study. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In aeolian saltation, the sand bed is a mixture of sand particle with a wide range of particle sizes. Generally, the particle size distribution (PSD) of saltating particles is ignored by previous aeolian transport models, which will result in differences between predictions and observations. To better understand the saltation process, a prediction method of the PSD of saltating particles was proposed in this article. The probability of contact between incident sand and bed sand was introduced into the particle-bed collision process. An artificial PSD of the incident saltating particles was set as the initial condition. A stochastic particle-bed collision model considering contact probability was then used in each iteration step to calculate a new PSD of saltating particles. Finally, the PSD of saltating particles can be determined when aeolian saltation reaches a steady state (saltation is in a steady state when its primary characteristics, such as horizontal mass flux and the concentration of saltating particles, remain approximately constant over time and distance). Meanwhile, according to the experimental results, a calculation formula for the contact parameter n is given, which characterizes the shielding effect of particles on each other. That is, if soil PSD and friction velocity were given, the PSD of saltating particles can be determined. Our results do not depend on the initial conditions, and the predicted results are consistent with the experimental results. It indicated that our method can be used to determine the PSD of saltating particles. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
A velocity formula is proposed for flow over a mobile sediment bed induced by velocity-skewed waves and current. The formula is obtained by a separation of waves and current velocities and requires seven free variables related to free stream velocity and sediment characteristics. The formula includes two parts:(1) a wave part consisting of the free stream velocity and defect function, which considers phase lead, wave boundary layer thickness, and mobile bed level, and(2) a current part, which ch...  相似文献   

15.
A test is proposed for Bagnold's postulate that the normal weight stress due to moving ‘bedload’ is balanced by a solid transmitted stress due to the rate of change of momentum produced by grain impacts on unit area of the stationary bed. The test involves derivation of an expression for normal momentum transfer due to saltating grains at moderate transport stages when grain-to-grain collisions and partial suspension during saltation may be ignored. A dimensionless number, Φ, (a grain Froude Number) is derived, given by ū2/g where ū is the mean grain forward velocity, g is the gravitational acceleration and L? is the length of a single saltation ‘jump’. Equilibrium demands that Φ be unity during bedload transport involving saltating grains if Bagnold's postulate is correct. Experimental data shows Φ < 1, the discrepancy between theory and experiment being due to the existence of lift forces acting upon bedload grains. Bagnold's postulate is correct for concentrated dispersions of grains, as in grain flows, when fluid lift forces may be neglected due to high particle concentration.  相似文献   

16.
稀性泥石流的平均运动速度研究   总被引:1,自引:0,他引:1  
余斌 《地震学刊》2009,(5):541-548
泥石流的运动速度是泥石流动力学研究中最重要的参数。稀性泥石流是常见也是危害较大的泥石流类型,准确而简洁地计算稀性泥石流的运动速度非常重要。现有的稀性泥石流平均速度经验公式,在使用上和适用地区上还存在一些问题。本文通过分析一系列稀性泥石流观测资料中的体积浓度与稀性泥石流的运动速度和阻力特征的关系,得出了一个新的计算稀性泥石流平均运动速度的经验公式,该公式能适应各种类型的泥石流沟,适用于一般急流的稀性泥石流;对于缓流稀性泥石流,计算值与观测值相比偏大,但很接近;不适用于缓慢稀性泥石流。本文提出的经验公式,使用简洁,计算稳定,与其他方法计算的稀性泥石流平均运动速度很接近。该速度计算经验公式也适用于稀性泥石流堆积扇上游沟道,但对于堆积扇上的速度,计算值偏大,且越往堆积扇的下游,偏差越大。  相似文献   

17.
《国际泥沙研究》2022,37(6):794-808
The current research deals with the dispersion of fine settling particles in a fluid flowing through an ice-covered channel under the laminar flow condition. An analytical solution of the two-dimensional convection–diffusion equation, based on the multi-scale homogenization technique, is obtained. To validate the current study, analytical results for the dispersion coefficient are compared with the available earlier research work. Moreover, the proposed analytical solutions for mean concentration distributions of the tracers are compared with the numerical results obtained from the finite difference technique. From the industrial and environmental points of view, the vertical concentration distribution provides a very significant information. The downstream evolution of the concentration distribution also is shown for typical time periods at different values of the settling velocity. The approach to the vertical uniformity shows that it is too slow a process in comparison to that of longitudinal normality. It was found that settling velocities of particles disturb the vertical uniformity and the centroid of the solute cloud rises due to the increase in settling velocity. Results illustrate that in the downstream direction, the vertical concentration distribution increases near the bed surface and it decreases in the proximity of the ice-covered surface of the channel with the increase of settling velocity, but the mean concentration of the solute increases. The current study may play an important role to understand the mechanism of the sedimentation process in a closed channel system.  相似文献   

18.
The granulometrical characteristics of a slowly-moving dust cloud   总被引:1,自引:0,他引:1  
A torn-up road offered the opportunity to sample a dust cloud continuously at different heights during a time interval of 51 hours. In particular the granulometrical characteristics of the dust caught were investigated. It appears that if the air layer in the vicinity of a dust cloud is not too turbulent, the cloud will be clearly granulometrically stratified. The coarse material moves chiefly at the bottom of the cloud, whereas the fine material will occur both at the bottom and at the top. The experiment also shows that the higher the dust in the cloud, the worse it is sorted. Above a critical height, however, the degree of sorting increases again. The variation of the mean dust diameter d50, as a function of the height z, can be expressed in a simple semi-logarithmic equation. The variation of the dust quantity G, as a function of the height z, can also be expressed in a semi-logarithmic form but the correlation is higher when a power equation is used. The ratio of fine silt to coarse silt seems to vary parabolically with height. One can only speak of an optimal transport height in the case of particles > 16 μm. For finer particles, the turbulence of a normal air stream is usually high enough to carry the particles anywhere in the dust cloud, so that one can no longer speak of an optimal transport height. The granulometrical border between aeolian transport in saltation and aeolian transport in suspension lies, according to the results of the experiment, at a diameter of about 63 μm.  相似文献   

19.
Vegetative filter strips (VFSs) can effectively trap sediment in overland flow, but little information is available on its performance in controlling high‐concentration sediment and the runoff hydraulics in VFS. Flume experiments were conducted to investigate the sediment deposition, hydraulics of overland flow and their relationships in simulating VFS under a great range of sediment concentrations with four levels of vegetation cover (bare slope and 4%, 11% and 17%) and two flow rates (15 and 30 L min?1). Sediment concentrations varied from 30 to 400 kg m?3 and slope gradient was 9°. Both the deposited sediment load and deposition efficiency in VFS increased as the vegetation cover increased. Sediment concentration had a positive effect on the deposited load but no effect on deposition efficiency. A lower flow rate corresponded to greater deposition efficiency but had little effect on deposited load. Flow velocities decreased as vegetation cover increased. Sediment concentration had a negative effect on the mean velocity but no effect on surface velocity. Hydraulic resistance increased as the vegetation cover and sediment concentration increased. Sediment deposition efficiency had a much more pronounced relationship with overland flow hydraulics compared with deposited load, especially with the mean flow velocity, and there was a power relationship between them. Flow regime also affected the sediment deposition efficiency, and the efficiency was much higher under subcritical than supercritical flow. The results will be useful for the design of VFS and the control of sediment flowing into rivers in areas with serious soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Saltation of sediment particles is an important pattern of bedload transport.Based on force analysis for sediment particles,a Lagrangian model was proposed for the saltating motion of bedload in river flows,which was then solved with numerical method.Simulation results on the saltating trajectories neglecting particle rotation and turbulence effects compare fairly well with experimental observations.The mean values of the saltation parameters (saltation height,length and velocity) also agree well with the previous experimental data.Based on the numerical results,regression equations for the dimensionless saltation height,length and velocity were presented.Using the numerically achieved characteristics of the sediment saltation,we also obtained mathematical expression for the sediment transport rate.The studies in this paper are significant for its contribution to mechanism of the bedload motion and the computation of sediment transport rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号