首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Silicic peralkaline volcanic rocks of the afar depression (Ethiopia)   总被引:1,自引:0,他引:1  
Three main types of recent volcanism may be distinguished in the Afar Depression: 1) oceanic volcanism of the axial ranges; 2) volcanism along the margins where an attenuated sialic crust probably occurs; 3) mainly fissural volcanism of Central-Southern Afar, with associated central volcanoes, similar as a whole to the volcanism of the Ethiopian Rift Valley. Peralkaline silicic volcanic rocks are found in all the three groups but showing some different characteristics which seem related to their geological location and which probably reflect different sources. Moreover emplacement of peralkaline granitic bodies, associated with volcanics of the same composition, marks the first stage of formation of the Afar Depression, in the Early Miocene. Axial Ranges: Erta’Ale and Boina volcanic ranges indicate that peralkaline rocks are the final liquids produced by fractionation of basalt in shallow magma chambers of central volcanoes. The parental magma is a transitional type of basalt with a mildly alkalic affinity, which fractionated under lowpH2O-pO2 conditions. Transition to peralkaline liquids is realized without passing a «true» trachytic (low silica) stage. The first peralkaline liquid is a low silica comendite and evidence exists that «plagioclase effect» was active in determining the first peralkalinity. Within the peralkaline field a fractionation mainly controlled by alkali feldspar progressively increases the peralkalinity and silica oversaturation of residual liquids (transition from comendites to pantellerites). The most peralkaline pantellerites of Boina are produced by fractionation of an alkali feldspar of constant composition (Ab65–68 Or35–32) suggesting that these liquids lie on a «low temperature zone» of the peralkaline oversaturated system. Marginal Units: On the borders of the depression peralkaline silicics are found in volcanic massifs mainly made of metaluminous silicic products. Petrology and geochemistry suggest a complex origin. Crystal fractionation, contamination with sialic crust and chemical changes related to a volatile rich phase, all these processes probably played a role in the genesis of these peralkaline silicic rocks. Central-Southern Afar Fissural Volcanism: Mildly alkaline basalts are associated with peralkaline and metaluminous silicics; intermediate rocks are very scanty. Fractionation from deep seated magmatic bodies with selective eruptivity and partial melting at depth of associated basalts or of a common source material are possible genetic mechanisms.  相似文献   

2.
3.
Tectonics — Between 15° and 13° N, Afar northern apex’ tectonics are determined essentially by sets of fractures with a NNW trend. This faulting is made of open tension fissures and normal faults, that form a graben with a narrow central trench. This trench is clearly visible over approx. 30 km NNW from lake Giulietti. It is then hidden below volcanic piles of the Erta Ale Range that mark the central trench. Further north the graben is concealed below very thick (several thousand m) evaporite deposits of the Salt Plain; but the central trench is still marked there by a line of varied accidents such as salt domes (including the potash dome of Dalol), phreatic explosion craters, and CO2 charged springs. North of the Salt Plain, the NNW trend is marked by the Mara’a-Alid Range. As a set-off, no lineaments have been observed in the field that could back the hypothesis of a N-S active zone (Wonji Fault Belt) being the most important feature of Afar Depression; this is definitively not the case, at least north of latitude 13°. Neither transverse transcurrent nor transform faults have been found. The assertion the huge scarp bordering Afar to the West being only an erosional feature superimposed over a large downwarp of the Ethiopian Plateau stratas is contradicted by several facts (actual normal faults, magnetic data, volcanoes close to the scarp, etc.). The conclusion of this first approach is that Northern Afar is a graben structure «en échelon» with the main Red Sea Rift, taking the place of the latter exactly at the latitude where it dies out. According to us, northern Afar is definitively a Red Sea structure and not, as previously proposed, a funnel shaped widening of the Main Ethiopian (Est African) Rilt. Volcanology — The volcanism of the Erta Ale Range is typically fissural in its southermost third; northwards shield volcanoes appear in the central part of the range; eventually, strato volcanoes, with trachytic and rhyolitic lavas, are heaped over the fissure basalts in the northern third of the chain. All the 7 volcanoes of the Range are active (either eruptive or fumarolic activity). The volcanoes over the 13th parallel are, from East to West, Barawli-Franca, a complexe acid center; Afdera, a dormant strato volcano; Alayta a big half fissure, half shield volcano; and Pierre Pruvost complex, with basaltic lava fields, a caldera strato volcano with related ignimbritic sheets, and a big cluster of active rhyolitic domes with rhyolitic lava flows. Peirology and magmatology — Samples analysed to date show five types of rocks outcropping in the surveyed area: 1) basalts; 2) andesine basalts; 3) dark trachytes; 4) oversatured trachytes; 5) soda rhyolites and pantellerites. In the Erta Ale range, acid rocks appear in the northern half and their quantity, relative to basic ones, increases northwards though remaining always quite subordinate. These acid rocks are always emitted by the central crater itself or through a nearby point. In the complex volcanoes of the 13th parallel lineament, trachytes and rhyolites are more generally concentrated on one side of the related basic strato-volcano. Current studies allow to detect the existence of an evolutive series of alkaline character: 1) initial fissure activity emits olivine alkali basalts; 2) a second stage is characterized by abundant andesine basalts; 3) a third stage generates either dark, femic trachytes, and (or) soda rhyolites. The inter-relationships between the basalt-dark trachytes series on the one hand and the oversatured trachytes — soda rhyolites series on the other hand, is one of the main problems of the northern Alar magmatology.  相似文献   

4.
Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by87Sr/86Sr ranging from 0.70328 to 0.70410.Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.  相似文献   

5.
Analyses of the latest Jurassic Santiago Peak volcanic rocks from the western zone of the Peninsular Ranges batholith reveal the existence of two independent groups; one comprising basalts and andesites of the island arc tholeiitic series, and the second made up of the dacites and rhyolites of the subalkaline (calc-alkaline?) series or silicic series. The basalts and andesites have V, Co and Ni contents similar to those estimated for the residual melts in equilibrium with the Peninsular Ranges gabbros. This fact together with the tholeiitic nature of the gabbros and the intimate spatial and temporal relationship between the SPV and the gabbros suggests that the basalts and andesites had a common origin with the gabbros. The mafic volcanism and plutonism seems to have occurred in a youthful island arc and the silicic volcanism in a mature island arc or a continental margin.  相似文献   

6.
Published major-element analyses of Ethiopian volcanic rocks have been subjected to a systematic discriminant analysis. The plateau regions can be subdivided according to the proportions of alkaline and tholeiitic basalts. In northern Ethiopia, these subprovinces show increasing basalt alkalinity with time. The most voluminous basalts have lowest magnesium values, independent of the degree of alkalinity. Rift and Afar basalt chemistry falls within the spectrum observed for the plateau basalts, with no perceptible difference resulting from lithospheric attenuation beneath Afar. However, silicic volcanics of the Rift-Afar floor differ in bulk terms from those of the plateau margins in showing a stronger bias towards peralkalinity, and having higher Na/K values. Two particularly voluminous volcanic episodes have occurred in Ethiopia, dated at ?30–19 m.y. and 4.5–0 m.y. and which link well with one model for seafloor spreading in the Red Sea and Gulf of Aden. Evidence for a mantle hotspot under Ethiopia remains ambiguous.  相似文献   

7.
Basalts from seamounts within the Nazca Plate representing intraplate volcanism, and the East Pacific Ridge between 19°S and 2°N have similar light rare earth depleted abundance patterns. Both intraplate and ridge basalts appear to have been derived from the low-velocity layer apparently depleted in large lithophile elements (DLVL). Nepheline-normative basalts and ferrobasalts occasionally occurring on the East Pacific Rise are shown to have also been derived from the same DLVL source. Furthermore, the rare-earth pattern similarity of nepheline-normative and tholeiitic basalts from the East Pacific Rise is best explained by distinct, pressure induced, conditions of partial melting of the DLVL source; whereas total rare-earth pattern enrichment and relative europium depletion of the ferrobasalts are consistent with shallow depth fractional crystallization during ascent.  相似文献   

8.
Forty new K-Ar and 40Ar/39Ar isotopic ages from the northern Main Ethiopian Rift (MER)–southern Afar transition zone provide insights into the volcano-tectonic evolution of this portion of the East African Rift system. The earliest evidence of volcanic activity in this region is manifest as 24–23 Ma pre-rift flood basalts. Transition zone flood basalt activity renewed at approximately 10 Ma, and preceded the initiation of modern rift margin development. Bimodal basalt–rhyolite volcanism in the southern Afar rift floor began at approximately 7 Ma and continued into Recent times. In contrast, post-subsidence volcanic activity in the northern MER is dominated by Mio-Pliocene silicic products from centers now covered by Quaternary volcanic and sedimentary lithologies. Unlike other parts of the MER, Mio-Pliocene silicic volcanism in the MER–Afar transition zone is closely associated with fissural basaltic products. The presence of Pliocene age ignimbrites on the plateaus bounding the northern MER, whose sources are found in the present rift, indicates that subsidence of this region was gradual, and that it attained its present physiography with steep escarpments only in the Plio-Pleistocene. Large 7–5 Ma silicic centers along the southern Afar and northeastern MER margins apparently formed along an E–W-oriented regional structural feature parallel to the already established southern escarpment of the Afar. The Addis Ababa rift embayment and the growth of 4.5–3 Ma silicic centers in the Addis Ababa area are attributed to the formation of a major cross-rift structure and its intersection with the same regional E–W structural trend. This study illustrates the episodic nature of rift development and volcanic activity in the MER–Afar transition zone, and the link between this activity and regional structural and tectonic features.  相似文献   

9.
The results of petrological and volcanological investigations of the Assab area (Ethiopia) are reported. Fissure activity — which produced basaltic lava flows and several spatter cones — and central activity — represented by a cumulus dome and two explosive craters — have been recognized. The area is characterized by E-W and NE-SW tectonic trends, whereas the NNW-SSE « Eritrean trend » is absent. Transverse tectonics is limited to the blocks bordering the Danakil Depression, and never extends into the Depression itself. Mineralogical composition and chemical data point to an alkaline nature of the Assab lavas, which have been classified as: picritic basalts tending to ankaramites; alkali olivine basalts; hawaiites; and all the rock types ranging from mugearites to trachytes. Two rock groups have been identified which could be due to crystal fractionation processes controlled by different degree of oxidation. The petrological difference between the rocks from Afar proper and those from the Danakil block (unquestionably alkaline rock types in the Danakil block, and transitional rock types in Afar) is emphasized.  相似文献   

10.
Abstract Isotopic compositions of He, Ne and Ar were measured on Plio–Quaternary alkaline basalts of Marib–Sirwah and Shuqra volcanic fields in Yemen, south-western Arabian Peninsula. Very high 3He/4He isotope ratios were found in olivine phenocrysts of some Quaternary alkaline basalts in both volcanic fields, located on the margin of the dispersed Afar mantle plume, compared with the Afar–Ethiopian province in the center of the mantle plume. This suggests that the Afar mantle plume source may consist of common component (C or focal zone (FOZO)) with variable primordial 3He/4He ratio rather than high μ mantle (HIMU) component. The three component mixing C as the Afar mantle plume, depleted mantle (DM) as upper mantle and lithospheric mantle with a hybrid enriched mantle I–II (EM I–EM II) characteristics may be adequate to explain He–Sr–Nd–Pb isotope variation for the Afar–Arabian Cenozoic volcanics. The occurrence of high 3He/4He ratios in the Marib–Sirwah volcanic field appears to show that the primitive basaltic magma, derived from the margin of the dispersed trous-like Afar mantle plume during 15–0 Ma, was not by contamination of lithospheric and upper mantle materials in comparison with that from the center of the Afar mantle plume as a result of relatively low thermal anomaly.  相似文献   

11.
The paper embodies the field, petrographic and petrochemical studies of the dykes occuring within the Deccan basalts, in the Western portions of Rajpipla hills. Major and minor dykes with different trends occur in the area varying in thickness from 2′ to 75′ and traceable lengthwise from few to several miles. The density of the dyke distribution is two per mile. The composition of the minor dykes ranges from teschenite to trachyte with dominant basaltic types and they seem to be coeval with the flows of the area. The major dolerite dykes are found to be post-lava. Both alkali-olivine basalt and tholeiitic types occur. The former phase preceeds the latter and includes the minor alkaline dykes. A differentiation trend based on new chemical analyses is proposed.  相似文献   

12.
Recent studies of the Sylhet Traps (? Jurassic) and the overlying Cretaceous-Tertiary sedimentary cover in the southern part of the Khasi Hills, Shillong Plateau in Assam have led to a reconstruction of the tectonic history of the area since Jurassic times; a clear picture regarding the nature of volcanism has also emerged. The history begins with effusion of tholeiitic basalts, apparently through E-W fissures developed in the peneplaned crystalline basement. One of these fractures became a fault (the Raibah fault) along which the northern non-volcanic block moved up relative to the southern block experiencing volcanism. The fault was active during and after the volcanism till Upper Cretaceous times. The sequence of eruption was as follows: (1) tholeiitic basalts, (2) minor alkali basalts (nepheline tephrite), (3) tholeiitic basalts, (4) localised explosive effusion of minor rhyolites and acid tuffs, and (5) tholeiitic basalts. Neither feeder dykes nor volcanic vents have been noted in the Sylhet Traps. There are no agglomerates among the basic flows; the fragmental rocks are actually flow breccias. The formation of the various structures such as flow breccias, layering and flow folds in many of the basalt flows are thought to have been controlled by the angle of slope and the rate of flow. Thus, the Sylhet Trap flood basalts are characterised by quiet effusion through linear fissures. The effusion was followed by a dyke phase, intruding also along E-W fractures, expecially in the monoclinally bent southern portion; the subsequent tectonic history of the area is also characterised by relative uplift and downsinking of different basement blocks. It is concluded that in the Shillong Plateau uparching of the basement led to fracturing, effusion of basalts apparently along some zones of fissuring along which differential vertical movement of basement blocks was taking place. In the light of the foregoing conclusions, available data on the tectonics of the Rajmahal and the Deccan Traps are examined; both these flood basalt provinces have suffered broadly similar tectonic histories as the Sylhet Traps. The various features of flood basalts, viz., large extent, huge thickness, subaerial nature, a post-volcanic dyke phase are interpreted as a consequence of fusion of the Upper Mantle, development of tensional fractures eruptions apparently along fractures between adjoining basement blocks undergoing differential uplift.  相似文献   

13.
An en echelon suite of four fracture zones, trending approximately N40°E, has been discovered during a survey of the Southwest Indian Ocean Ridge between Bouvet Island and 14°E. The largest of these fracture zones, the Islas Orcadas and Shaka, are less than 30 km wide, have more than 3 km of vertical relief, and are respectively 100 and 200 km in length. The morphology of these and the Bouvet and Prince Edward fracture zones have been used to compute a pole for the relative motion between Africa and Antarctica. This pole, at 4°S and 32°W, is within the range of previously computed pole positions.Ridge basalts were dredged at three separate locations: at the Conrad fracture zone near 55°40′S and 3°51′W, at the Islas Orcadas fracture zone near 54°5′S and 6°4′E, and at the ridge crest near 11°E. In addition, samples from a probable upper mantle intrusion were recovered from one wall of the Islas Orcadas fracture zone. The opposite wall was very different consisting entirely of normal mid-ocean ridge basalt.  相似文献   

14.
The Mesozoic-Cainozoic volcanism of NE Africa and Arabia is described in terms of four major magmatic provinces. These are dominantly basaltic and vary in general composition from strongly alkaline to tholeiitic, with some overlap between provinces. Most, but not all, of this volcanism has taken place within the confines of the Afro-Arabian dome and its attendant rifts, but the magmatism is not explicable in terms of a ‘mantle plume’ beneath Afar because such a plume explains neither the spatial nor temporal distribution of volcanicity. Instead, I propose a multi-stage model in which basaltic magmas of transitional composition were generated in Paleogene time as a response to regional extension. With subsequent evolution of the Red Sea and Gulf of Aden into proto-oceans, these magmas took on the character of oceanic tholeiites. In the Neogene, alkalic activity related to epeirogenic doming was superimposed on this extension-related volcanism. A third, independent magma-generating mechanism appears to have operated NW of the Afro-Arabian dome, where small volumes of alkaline basalt magma have been erupted intermittently since early in the Cretaceous. This activity may result from periodic tapping of deep asthenosphere by tensile fracturing and upwarping of the northward-drifting African plate.  相似文献   

15.
Rare earths (RE) in basalts erupted within the rift of the Mid-Atlantic Ridge show a progressive change from light-RE enriched to depleted patterns from the Azores Platform (40°N) down to 33°30′N. South, the pattern remains light-RE depleted as along other “normal ridge” segments. A progressive increase in chemical variability of the basalts towards the Azores is also noted.The latitudinal RE profile and corresponding ΣFeO/ΣFeO + MgO variations, together, indicate that the origin of these basalts cannot be accounted for simply by considering variable extents of partial melting of a single mantle source and subsequent fractional crystallization during the ascent of the magmas. These two processes produce only second-order effects on the RE patterns. The data requires the presence of a distinct, light-RE richer, mantle source beneath the Azores Platform relative to that of south of 33°30′N and an intermediate zone where both mantle types mix. The relative contribution of the Azores mantle source to the mix appears to decrease fairly regularly southward along the ridge and becomes negligible at 33°30′N. Increasing chemical variability of the basalts towards the Azores is probably caused by correspondingly larger extent of fractional crystallization at shallow depth, and/or greater variability in the extent of partial melting, apparently subsequent to, and superimposed on the mixing of the two mantle sources.The combined morphological, geophysical and RE evidence along the profile are consistent with a model suggesting upwelling of a major blob (plume) under the Azores Plateau; and reveal the present extent of the blob's overflow and mixing with the asthenosphere depleted in large ionic lithophile trace elements. The influence of the Azores blob is geochemically detectable up to 1000 km southwestward beneath the ridge axis.  相似文献   

16.
A broad zone of dominantly subaerial silicic volcanism associated with regional extensional faulting developed in southern South America during the Middle Jurassic, contemporaneously with the initiation of plutonism along the present Pacific continental margin. Stratigraphic variations observed in cross sections through the silicic Jurassic volcanics along the Pacific margin of southernmost South America indicate that this region of the rift zone developed as volcanism continued during faulting, subsidence and marine innundation. A deep, fault-bounded submarine trough formed near the Pacific margin of the southern part of the volcano-tectonic rift zone during the Late Jurassic. Tholeiitic magma intruded within the trough formed the mafic portion of the floor of this down-faulted basin. During the Early Cretaceous this basin separated an active calc-alkaline volcanic arc, founded on a sliver of continental crust, from the then volcanically quiescent South American continent. Geochemical data suggest that the Jurassic silicic volcanics along the Pacific margin of the volcano-tectonic rift zone were derived by crustal anatexis. Mafic lavas and sills which occur within the silicic volcanics have geochemical affinities with both the tholeiitic basalts forming the ophiolitic lenses which are the remnants of the mafic part of the back-arc basin floor, and also the calc-alkaline rocks of the adjacent Patagonian batholith and their flanking lavas which represent the eroded late Mesozoic calc-alkaline volcanic arc. The source of these tholeiitic and calc-alkaline igneous rocks was partially melted upper mantle material. The igneous and tectonic processes responsible for the development of the volcano-tectonic rift zone and the subsequent back-arc basin are attributed to diapirism in the upper mantle beneath southern South America. The tectonic setting and sequence of igneous and tectonic events suggest that diapirism may have been initiated in response to subduction.  相似文献   

17.
Tholeiitic basalts of the Napali Formation comprise the bulk of the Kauai shield volcano. Potassium-argon ages measured on 16 samples from three separate areas in this formation lie in the range 5.14 ± 0.20 to 3.81 ± 0.06 m.y. The scatter in the measured ages in each area is greater than that expected from experimental error alone, and variable loss of radiogenic argon is regarded as at least partly responsible. Nevertheless an interval of eruption in the order of 0.8 m.y. is deduced for the Napali Formation. The results from the Napali Formation taken together with K-Ar ages measured earlier on basalts of the Makaweli Formation, the youngest formation of the dome-building phase, yield a mean age of 4.43 ± 0.45 m.y. for the construction of the main subaerial shield volcano of Kauai.When this result from Kauai is combined with estimates of the average age for the shield-building volcanism in 16 other volcanoes in the Hawaiian island chain, extending over a distance of more than 2800 km, the data are found to conform to migration of the centre of volcanism from north-northwest to south-southeast at a uniform rate of 9.4 (±0.3) cm/yr over the last 28 m.y. Non-linear models of propagation of volcanism in the Hawaiian chain are quite unnecessary, especially when uncertainties in the data base are taken into account. These results are consistent with an origin of the Hawaiian volcanic chain by eruption from a magma source situated below the Pacific lithospheric plate, as proposed under hot spot or plume models. Depending upon choice of the pole for the Pacific plate, rates of rotation about the pole of 0.9° to 1.0°/m.y. are derived. By extrapolation of the Hawaiian Island chain data an age estimate of 37.8 m.y. is derived for the Hawaiian-Emperor Seamount intersection.  相似文献   

18.
Pb, Nd and Sr isotopic compositions have been determined in lherzolite-xenolith-bearing alkali-basalts from the center of the African shield. The present data are very similar to those reported for ocean-island basalts and do not support the hypothesis of different mantle sources for alkali-basalts from continental and oceanic areas. From these observations and on the basis of data obtained for xenolith in kimberlite and for tholeiitic continental basalts one may infer the following terrestrial mantle structure: whereas oceanic tholeiites would originate in upper oceanic mantle, oceanic and continental alkali basalts would come from the lower mantle and tholeiitic continental basalts from the continental lithosphere.  相似文献   

19.
Masahiko  Yagi 《Island Arc》1993,2(4):240-261
Abstract Alteration of reservoir rocks in the Yurihara Oil and Gas Field, hereafter referred to as the ‘Yurihara field’, have been examined by using samples from six wells. These rocks are basalts in the lowermost part of the basin-fills (‘green tuff’ Formation). These basalts were produced in many eruptions in a submarine environment during the early to middle Miocene, and they underwent continuous intensive alteration genetically associated with Miocene submarine volcanism. The alteration of the basalts is of two types: low grade metamorphism and hydrothermal. The former belongs to the type of ocean floor metamorphism and comprises two subgroups: zeolite (zone I) and prehnite-pumpellyite (zones IIa: vein and amygdule occurrence, and IIb: replacing plagioclase). The latter is characterized by potassic metasomatism accompanied by adularia, quartz and calcite veins (zones IIIa: center and IIIb: margin of the metasomatism). This overprints the low grade metamorphic alteration. The central zone of hydrothermal alteration coincides with a major estimated fault, so that fluids probably assent along the fault. The basalts erupted during 16.5-15.5 Ma, determined by planktonic foraminifera assemblages of inter-bedded shales, then underwent successive low grade metamorphism. In time, the hydrothermal alteration that overprints low grade metamorphism occurred. Adularia veins of the altered rocks located in the hydrothermal alteration zones (zone IIIa and IIIb) have been dated as 9 Ma determined by the K-Ar method. This fact indicates that the activity of low grade metamorphism had already crossed the peak before hydrothermal alteration occurred at 9 Ma. The shape of isotherms of fluid inclusion homogenization temperatures (Th) and that of isolines of apparent salinity (Tm) almost coincide with each other, and these also coincide with the distribution of hydrothermal alteration (zones IIIa and IIIb). This indicates that the fluid inclusions formed at the same time as ascending fluids produced the potassic metasomatism. The maximum Th of the fluid inclusions is 222°C and Tm indicates trapped fluids of up to 3.3 wt% equivalent NaCl (i.e. almost the same as seawater). A Th versus Tm plot indicates mixing occurred between hydrothermal fluids and formation water that has low salinity. Corrensite and chlorite form veins, and the temperatures of their formation, estimated by the extent of aluminium substitution into the tetrahedral site of chlorite, ranges between 165 and 245°C in the centre of the hydrothermal alteration zone (zone IIIa). This is consistent with the result of Th analyses. The deposition temperature of chlorite associated with prehnite in veins ranges between 190 and 215°C in zones IIa and IIb.  相似文献   

20.
The Nevados de Chillán are located in the Southern Chilean Andean Cordilleras (71°25′ W, 36°50′ S). Their historic activity is retraced since 1750. The quaternary volcanoes are located along the major axis of an old elliptic caldera. The recent lavas of the Nevados de Chillán are andesites and dacites characteristic of cale-alkaline association which is classical for orogenic beits. Their K2O content has been correlated with the depth of the Benioff zone in the frame of the quaternary volcanism of the Chilean continental margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号