首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李春梅  王红亚 《湖泊科学》2012,24(4):615-622
对贵州省麦岗水库沉积物环境磁性特征的研究表明,亚铁磁性矿物主导了沉积物矿物磁性特征,但同时也存在反铁磁性矿物等其他矿物,超顺磁颗粒在沉积物中广泛存在.在所选矿物磁性参数中,χlf、χfd、SOFT与粒度不相关;χARM、SIRM、F300与粒度相关,但相关系数不高;χARM/χlf、χARM/SIRM和粒度显著相关,可以作为粒度的代用指标.研究结果显示,磁性参数确实可以作为粒度的代用指标.但对比研究表明,在不同沉积环境,甚至相似沉积环境的沉积物中,矿物磁性参数和粒度的关系可能不同,在特定沉积环境中,利用磁性参数作为粒度的代用指标应该在充分研究的基础上进行,使研究结果更为可靠.  相似文献   

2.
Understanding the sources of sediments deposited in tidal flats is critical for reconstructing the evolution of coastal regions impacted by large rivers. Environmental magnetism can be an effective tool to track sediment sources and analyze the sediment properties. We evaluate several magnetic parameters from the tidal flat sediments along the Jiangsu coast. The results show that the sediments of Liandao Island have the lowest values of magnetic susceptibility (χ), anhysteretic remanent magnetization (ARM) and saturation isothermal remanence magnetization (SIRM). In addition to these, the values of χ, ARM and SIRM display a generally increasing trend from the north to the south along the Jiangsu coast. The strong relations between χ, ARM and SIRM show that the changes of magnetization of the tidal flat sediments mainly reflect the changes of concentration rather than those in grain sizes of magnetic particles. The main magnetic phase is magnetite, with a small amount of hematite. The strong relationship between χ and the 2-16 μm grain-size fraction suggests that magnetite is enriched in the finer silt fraction. The sediment sources is the main factor that influences the magnetic properties of the tidal flat sediments from the Jiangsu coast. Combined with the previous studies, the results indicate that the tidal flat sediments of Liandao Island were mainly derived from the nearshore rock weathering. The Yellow River is the dominant supplier for the north of Dafeng, while the Yangtze River is the dominant supplier for the south of Rudong. The coast between Dafeng and Rudong is a transition zone influenced by both rivers. This study provides a basis against which possible future variations in sediment composition resulting from catchment changes can be assessed.  相似文献   

3.
Soil loss is a global environmental problem resulting from the erosion process caused by many factors,including land use and slope position. Estimation of total soil loss from agricultural fields is useful for understanding the consequences of historical and current erosion. The main purposes of the current study are to explore the application of magnetic measurements in the mapping and measuring soil redistribution in cultivated(MZ13) and forested(MZ17) transects in a Moroccan subcatchment, to ...  相似文献   

4.
中国东部红土的磁性及其环境意义   总被引:22,自引:2,他引:20       下载免费PDF全文
通过中国东部红土剖面的环境磁学参数(磁化率、频率磁化率、非磁滞剩磁、饱和等温剩磁等)测量,获得了红土剖面磁性矿物浓度、粒度和类型等特性随深度的变化曲线以及红土经连二亚硫酸钠一柠檬酸钠一重碳酸钠溶液(DCB)处理后的磁性参数变化.根据红土剖面环境磁学参数及其磁参数比值的变化可将红土分为3个层段,各层段的磁性矿物特征存在明显的差异.证实了红土剖面中的磁性载体主要是磁赤铁矿、赤铁矿和针铁矿,并分离出了球粒状磁颗粒.认为红土磁性矿物的数量、粒度、类型等的变异指示了其形成时的环境特征,其频率磁化率和DCB处理的磁化率损失量指示了红土成壤化作用的强弱,可作为在红壤区研究过去全球变化的一种新途径.  相似文献   

5.
土壤剖面中粉煤灰垂向迁移的磁响应   总被引:8,自引:0,他引:8       下载免费PDF全文
对浙江省安吉县梅溪发电厂粉煤灰贮灰场附近的土壤短剖面进行环境磁学、元素含量及粒度研究.借助模糊聚类分析,分辨出粉煤灰原位堆积、富集、迁移深度及未受污染土壤特征.剖面上部0~14cm为粉煤灰的原位反映,多畴磁铁矿主导了该段样品磁性.其中11~14cm处磁性矿物和金属元素有所富集.14~21cm为粉煤灰在土壤中的迁移深度.迁移段土壤中亚铁磁性矿物及Pb、Zn等金属含量介于底部未污染土壤与上部粉煤灰原位堆积层之间.单畴斜交反铁磁性矿物及来源于上部粉煤灰的多畴磁铁矿共同主导了该段土壤的磁性特征.21cm以下土壤基本未受粉煤灰污染,单畴斜交反铁磁性矿物是其主要磁性矿物.指标聚类分析表明,亚铁磁性矿物主要赋存在粗粉砂中,单畴磁晶粒主要存在于细粉砂中.χ、ARM、SIRM与Cu、Mn、Pb、Zn呈显著相关.结合多元统计分析,磁参数可用于追踪、识别粉煤灰在土壤剖面中的垂向迁移.  相似文献   

6.
Intense rainfall following wildfire can cause substantial soil and sediment redistribution. With concern for the increasing magnitude and frequency of wildfire events, research needs to focus on hydrogeomorphological impacts of fire, particularly downstream fluxes of sediment and nutrients. Here, we investigate variation in magnetic enhancement of soil by fire in burnt eucalypt forest slopes to explore its potential as a post‐fire sediment tracer. Low‐frequency magnetic susceptibility values (χlf) of <10 µm material sourced from burnt slopes (c. 8·0–10·4 × 10?6 m3 kg?1) are an order of magnitude greater than those of <10 µm material derived from long‐unburnt areas (0·8 × 10?6 m3 kg?1). Susceptibility of anhysteretic remanent magnetization (χARM) and saturation isothermal remanent magnetization (SIRM) values are similarly enhanced. Signatures are strongly influenced by soil and sediment particle size and storage of previously burnt material in footslope areas. Whilst observations indicate that signatures based on magnetic enhancement show promise for post‐fire sediment tracing, problems arise with the lack of dimensionality in such data. Magnetic grain size indicators χfd%, χARM/SIRM and χfd/χARM offer further discrimination of source material but cannot be included in numerical unmixing models owing to non‐linear additivity. This leads to complications in quantitatively ascribing downstream sediment to source areas of contrasting burn severity since sources represent numerical multiples of each other, indicating the need to involve additional indicators, such as geochemical evidence, to allow a more robust discrimination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A preliminary magnetic study around Meishan steel mill in Nanjing (SE China) was carried out combining geochemical analysis with scanning electron microscopy (SEM) to prove that paddy soil can be a suitable target for environmental study on heavy metal pollution. Magnetic background investigation showed a strong variation in this area due to different land uses and soil types. Magnetic susceptibilities (MS) measured on forest soils are much higher than in paddy fields, and values below 20 cm of the soil surface in forest with parent material of Xiashu loess are several times higher than in paddy soil with parent material of fluvisol. Measurements on vertical profiles show that paddy soil has a very low and stable magnetic background with mass-specific MS around 15 × 10− 8 m3 kg− 1. A strong enhancement of MS values is found in the upper ~ 20 cm of paddy soil predominated by multidomain and pseudo single domain magnetite. However, relatively low S-ratios (0.57 to 0.85) reveal a significant contribution of imperfect anti-ferromagnetic minerals. Detailed research on a paddy soil core at site C719 near the steel mill indicates strong correlation between magnetic mineral concentration-related parameters (χ, ARM, SIRM) and heavy metal concentrations of Cu, Pb and Zn. In addition, typical anthropogenic Fe-spherules are detected in top paddy soil by means of SEM, which indicates that the increase of susceptibility in upper soil is mainly caused by steel mill emission. Mapping of MS in paddy fields across the steel mill area shows a decrease of MS with the distance to the major emission zone. Positive correlation between χ and Zn is found by measuring surface soil samples around the steel mill. Because of low background and high homogeneity of the ~ 20 cm uppermost mixing layer paddy fields are especially suitable for magnetic surface mapping of heavy metal pollution.  相似文献   

8.
Measurements of magnetic susceptibility of soils, reflecting magnetic enhancement of topsoils due to atmospherically deposited magnetic particles of industrial origin, are used recently in studies dealing with outlining polluted areas, as well as with approximate determination of soil contamination with heavy metals. One of the natural limitations of this method is magnetic enhancement of soils caused by weathering magnetically rich parent rock material. In this study we compare magnetic properties of soils from regions with different geological and environmental settings. Four areas in the Czech Republic and Austria were investigated, representing both magnetically rich and poor geology, as well as point-like and diffuse pollution sources. Topsoil and subsoil samples were investigated and the effect of geology and pollution was examined. Magnetic data including mass and volume magnetic susceptibility, frequency-dependent susceptibility, and main magnetic characteristics such as coercivity (Hc and Hcr) and magnetization (Ms and Mrs) parameters are compared with heavy metal contents. The aim of the paper is to assess the applicability of soil magnetometry under different geological-environmental conditions in terms of magnetic discrimination of dominant lithogenic/anthropogenic contributions to soil magnetic signature. Our results suggest that lithology represents the primary effect on soil magnetic properties. However, in case of significant atmospheric deposition of anthropogenic particles, this contribution can be clearly recognized, independent of the type of pollution source (point-like or diffuse), and discriminated from the lithogenic one. Different soil types apparently play no role. Possible effects of climate were not investigated in this study.  相似文献   

9.
The physical and chemical properties of soils are closely controlled by the climate factors and thus are significant for paleoclimate reconstruction.In this study,two adjacent soil profiles(LP and LPM) with different slopes from Yan'an,Shaanxi Province,were investigated using magnetic methods to determine the impact of topography on magnetic properties of soil.Our results show that although LP and LPM have similar magnetic minerals and grain size distribution,both the average and maximum magnetic susceptibility(x) of LP are almost doubled compared to those of LPM.In addition,the ratios of susceptibility enhancement to the background(Ex) for LP and LPM are 2.27 and 2.04,respectively;the ratios of saturation isothermal remnant magnetization(SIRM) enhancement(ESIRM) for these two profiles are 1.80 and 1.86,respectively.The slopes of the linear regression trends between frequency-dependent susceptibility(χFD) and "hard" isothermal remnant magnetization(HIRM)(χFD/HIRM),Anhysteretic remnant magnetization(ARM) and HIRM(ARM/HIRM),are almost free from the effect of parent material.χFD/HIRMs for LP and LPM are 28.7×10x5 and 28.9×10x5 A mx1,respectively;ARM/HIRMs are 0.35 and 0.33 for LP and LPM,respectively.These results demonstrate that parameters,χFD/HIRM,ARM/HIRM,Ex and ESIRM,are affected less by parent material and topography,which are better than the x for bulk samples to indicate the paleoclimatic conditions(e.g.,the paleorainfall) in a large-scale region.  相似文献   

10.
《国际泥沙研究》2023,38(5):739-753
Soil erosion is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (χlf) and high (χhf) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that χlf is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.  相似文献   

11.
The objective of this study was to explore the slope position and land use change effects on the variability in magnetic susceptibility and 137Cs inventory as the soil redistribution indicators in a hilly semiarid calcareous area in Iran. The selected study area is located in a hilly region with pasture and cultivation land use of Fereydunshahr, Isfahan Province in west-central Iran. In the two mentioned dominant ecosystems, four slope positions including summit, shoulder, backslope and footslope were identified and in each land use and slope position, three cores were selected to collect 72 soil samples from three depths (0–10, 10–20, 20–30 cm) in an area of 15 × 15 cm. Additional 28 soil samples were collected from the reference site for soil loss and deposition calculations by using the Cs-137 measurement. The results of the study with the use of the Cs-137 technique showed that the average soil loss in the pasture land (46.4 t ha 1 yr 1) was significantly (p < 0.05) lower than the average soil loss in the cultivated land (80.4 t ha 1 yr 1). The highest soil loss in both land uses was obtained in the shoulder position, 60.1 and 84.4 t ha 1 yr 1, respectively, for the pasture and cultivated lands. Moreover, the highest rates of soil deposition was observed in a footslope position in both land uses and they were 34 and 32.4 t ha 1 yr 1 for the pasture and cultivated lands, respectively. Magnetic susceptibility was significantly (p < 0.05) greater in pasture (χlf = 41.51 × 10 8 m3/kg) than in the cultivated land (χlf = 34.90 × 10 8 m3/kg). The pasture land with a lower soil loss rate, indicated significantly higher magnetic susceptibility in all landform positions as compared to that in the cultivated land. The results of the correlation analysis showed that among the studied soil physico-chemical properties, χlf (r = 0.83, p < 0.01) in the pasture land had the highest correlation with the Cs-137 inventory. Throughout the non-linear regression analysis, χlf was introduced for relating soil parameters and the cesium inventory explained 68% and 79% of the total variability of 137Cs in the pasture and cultivated lands, respectively. The results implied that the variability in the magnetic susceptibility within the hillslope is consistent with the variation of the Cs-inventory; and the results thus demonstrate the slope and land use effects on soil redistribution.  相似文献   

12.
Gangcai Liu  Jianhui Zhang 《水文研究》2007,21(20):2778-2784
High frequency seasonal drought in purple soils (Regosols in FAO taxonomy) of the hilly upland areas of Sichuan basin, China, is one of the key restrictive factors for crop production. In order to manage irrigation and fertilizer application in these soils effectively, the soil water content in a sloped plot with 60 cm soil depth was measured by neutron probe devices to investigate the soil moisture regime during the 1998 rainy season after various amounts of rainfall events. The results showed that variation of soil moisture along the slope positions was highest in the top soil layer during the period of sporadic rainfall that did not induce any runoff. The coefficients of variation of soil moisture at various slope positions (upper, middle, and lower) are 17·36%, 8·95%, 10·25%, 8·58%, 8·05% and 9·21% at the 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and 60 cm soil depths respectively. When surface runoff occurred, the soil moisture dynamics at various positions on the plot were then very different. Soil water content decreased more rapidly on the upper slope than on the middle and lower slope positions. When both surface runoff and throughflow occurred, the soil moisture dynamics in the various layers showed a stable period (soil water content is near constant as time elapses) that lasted about 1 week. Also, the pattern of moisture dynamics is ‘decreasing–stabilization–decreasing’. Thus, irrigation and fertilization management according to the spatial and temporal features of soil moisture dynamics on sloped land can increase the water and fertilizer utilization efficacy by reducing their losses during the stable period. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Magnetic Characteristics of Different Soil Types from Bulgaria   总被引:3,自引:0,他引:3  
Magnetic studies of different soil types can provide valuable information about palaeoenvironmental conditions at the time they were formed. Results of investigations of rock-magnetism of genetically different soil types, which developed over varying time intervals (Meadow Chernozem - formed during the last 6000 years BP; Leached Cinnamonic soil - formed since the 3rd-2nd century BC and Pellic Vertisoil - the oldest, formed since the Late Pliocene) are presented. The soil profiles of the Leached Cinnamonic and Pellic Vertisoil are characterized by lower values of magnetic susceptibility, as compared to that of the parent materials. It is shown that using percentage frequency-dependent susceptibility (Xfd%) and viscous remanent magnetization (VRM), pedogenic alteration could be detected even in such circumstances. The variations of the parameters measured along the depth of the studied Meadow Chernozem soil profile are characterized by gradual smooth magnetic enhancement, pointing to the absence of secondary redistribution of pedogenic magnetites. In contrast to this case, the two other profiles (Leached Cinnamonic and Pellic Vertisoil) show magnetically enhanced lower (illuvial) horizons due to processes of acid destruction and re-precipitation of the original pedogenic ferromagnetic minerals down the profiles. These specific magnetic properties are of particular importance in using susceptibility variations as a palaeoclimatic proxy record.  相似文献   

14.
This study examined the variation in soil erodibility along hillslopes in a Prairie landscape. The soil loss produced by simulated rainfall on undisturbed soils was used as an index of relative soil erodibility. Relative erodibility, and several soil properties, were measured at the summit, shoulder, midslope footslope and toeslope of 11 slope transects in an area of cultivated grassland soils on hummocky glacial till. The variation of erodibility with slope position was statistically significant, and slope position explained about 40 per cent of the variation in the erodibility measurements. Erodibility was 14 per cent higher on the shoulder and midslope, and 21 per cent lower on the toeslope, than on the summit and footslope. Local variation in erodibility along slopes was considered to be an important control on patterns of soil erosion in the landscape. The variation of erodibility along the slopes reflected soil property trends. The greatest erodibility was associated with upper slope positions where soils tended to be shallow, coarse, poorly leached and low in organic matter, while lower erodibility was found at lower slope positions with deep, organic-rich and leached soils. Of the individual soil properties considered, silt and sand content were the most highly correlated with erodibility. The results, together with results from other studies, also suggest that net erosion and erodibility are positively related.  相似文献   

15.
In this study, mineral magnetic properties and petroleum hydrocarbons were statistically analysed in four sediment cores (C1, A1, T1 and K1) from the north east coast of Tamilnadu, India to examine the feasibility of PHC concentrations assessment using magnetic susceptibility. The C1 and A1 cores reveal a clear horizon of increase in PHC above 35 and 50 cm respectively suggesting the excess anthropogenic loading occurred in the recent past. Magnetic properties which were enhanced in the upper part of the sediment cores were the result of ferrimagnetic minerals from anthropogenic sources. Factor analysis confirmed that the input of magnetic minerals and petroleum hydrocarbons in Chennai coastal sediments are derived from the same sources. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of petroleum hydrocarbon contamination in marine sediments.  相似文献   

16.
The soil in the Rif, Morocco, is at serious risk because increasing anthropogenic pressures are gradually transforming large natural areas into farmland. The distribution of magnetic minerals within the soil profile can be used to assess soil development and degradation. The soils in the study area are severely eroded because of a combination of highly erodible soils, intense rainstorms and scarce vegetation cover. To sample of representative soil profiles, lithology, slope gradient and land use were considered. The ranges of magnetic susceptibility in the soil profiles distinguished between two primary soil groups. Magnetic susceptibility varied in the soil profile and along the soil toposequence, and the variations were related to the differences in the original magnetic composition and the influence of main erosion factors. Lithology is the main factor contributing to the variation in magnetic susceptibility. The magnetic susceptibility values in soils on Tertiary marls (χ = 13·5 × 10?8 m3 kg?1) differed significantly from those on Quaternary terraces (χ = 122·1 × 10?8 m3 kg?1). Slope affected the distribution of magnetic susceptibility because of the continuous loss of topsoil in some parts of the slope and the deposition of eroded soil in others. Elimination of the natural vegetation cover and a shift to cultivated land for cereals has had a negative impact on soil development and, on similar slopes and substrates, magnetic susceptibility decreased significantly in cultivated soils. The soils on steep slopes that had natural vegetation cover retained the magnetic minerals better than did those on gentler slopes that were under cultivation. Grazing, clearing and, especially, tilling has weakened the soil and made it much more vulnerable to erosion. An analysis of the main factors causing erosion will help to promote rational use of the land and to establish conservation strategies in such fragile agroecosystems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
亚热带富铁土的磁学性质及其磁性矿物学   总被引:7,自引:3,他引:4  
通过55个亚热带富铁土的磁化率(χ)、频率磁化率(χfd)、非滞后剩磁(ARM)和饱 和等温剩磁(SIRM)等磁性参数测定,结合氧化铁化学形态分析和矿物鉴定,初步明确了亚热 带富铁土的磁学特征及其磁性矿物.磁测数据表明富铁土中存在强磁性的矿物,其磁化率χ 与土壤游离氧化铁(Fe)含量呈极显著指数正相关(R=0.5971),频率磁化率χfd与土壤游离氧 化铁含量呈极显著直线正相关(R=0.4289).富铁土的χfd和非滞后磁化率χARM。值表明土壤 中的磁性矿物以超顺磁性(SP)和稳定单畴(SSD)颗粒为主,富铁上的χ和χARM呈极显著直线 正相关(R 0.9429),证明富铁土的磁性是由风化成土过程产生的 SP和 SSD磁性颗粒贡献 的.矿物磁测结合X-衍射证明富铁土中的氧化铁矿物由赤铁矿、磁赤铁矿和针铁矿组成。  相似文献   

18.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The extrapolation of results from field trials to larger areas of land for purposes of regional impact assessment is an important issue in geomorphology, particularly for landform properties that show high stochastic variability in space and time, such as shallow landslide erosion. It is shown in this study, that by identifying the main driver for spatial variability in shallow landslide erosion at field scales, namely slope angle, it is possible to develop a set of generic functions for assessing the impact of landslides on selected soil properties at larger spatial scales and over longer time periods. Research was conducted within an area of pastoral soft‐rock Tertiary hill country in the North Island of New Zealand that is subject to infrequent high intensity rainfall events, producing numerous landslides, most of which are smaller than several hundred square metres in size and remove soil to shallow depths. All landslides were mapped within a 0·6 km2 area and registered to a high resolution (2 m) slope map to show that few landslides occur on slopes < 20° and 95% were on slopes > 24°. The areal density of landslides from all historical events showed an approximately linear increase with slope above 24°. Integrating landslide densities with soil recovery data demonstrates that the average value of a soil property fluctuates in a ‘saw‐tooth’ fashion through time with the overall shape of the curve controlled by the frequency of landslide inducing storm events and recovery rate of the soil property between events. Despite such fluctuations, there are gradual declines of 7·5% in average total carbon content of topsoil and 9·5% in average soil depth to bedrock, since the time of forest clearance. Results have application to large‐scale sediment budget and water quality models and to the New Zealand Soil Carbon Monitoring System (CMS). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
V-shaped gullies are formed on slopes in the Rif Mountains where stony colluvium covers a truncated Luvisol in finegrained, early pleistocene slope deposits. The colluvium resulted from large-scale deforestation of summit areas in recent times. A number of properties related to the response of soil material to rainfall were investigated. Colluvium has a high infiltration capacity compared to the Luvisol. Consequently, the deposition of colluvium reduced overland flow and erosion by surface wash. Gully-forming processes on the other hand were activated by the superposition of permeable over impermeable material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号