首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several studies on the scaling properties of the near-Earth magnetosphere and auroral phenomena are reviewed. These studies employ modern analysis techniques that include fractal, multifractal, wavelet, wavelet bicoherence, and sign-singularity analyses as well as cellular automaton simulations of sandpile and avalanches. The results provide strong evidence for the multiscale, cross-scale coupling, and reorganization nature of auroral and magnetospheric phenomena, suggesting the possibility that the magnetosphere is in a forced and/or self organized critical state. Signatures of inverse cascade are found in magnetic fluctuations in current disruption events, which may indicate large-scale substorm features such as substorm current wedge and plasmoid may be evolved from small-scale plasma turbulence structures. Insights gained from these studies help to discriminate the existing competing substorm models. The multiscale properties of magnetospheric substorms are consistent with substorm models with intrinsic multiscale processes and not with substorm models with only a macroscopic process.  相似文献   

2.
Certain large magnetic lays, registered by magnetometers in the auroral and subauroral zones simultaneously with SC instant and accompanying events, substantially differ from activations at the beginning of auroral substorm. Such basic substorm elements as energy accumulation during the growth phase and breakup—activation in the localized region near midnight—are absent. During such sudden auroral activations (SAs), a disturbance begins in a wide sector of longitudes and latitudes. It is proposed to combine SAs into an individual class of magnetospheric disturbances. The particle acceleration and injection mechanism, which causes SAs, is considered.  相似文献   

3.
极光全天空视频图像分析系统   总被引:3,自引:4,他引:3       下载免费PDF全文
全天空成像观测是目前极光地面观测和反演磁层结构与动力学行为最有效的手段之一,本文介绍在参照WDC-C2极光数据中心ADPRS(AuroralDataProcessing&RetrievingSystem)系统功能的基础上,采用视频图像采集技术,首次在微机上开发成功的一个极光全天空视频图像分析系统.该系统在图像处理用户界面的构建上采用了视窗编程技术,在全天空图像到地磁坐标/地理坐标的投影变换中首次引入了强度修正因子,其功能可与ADPRS系统媲美.  相似文献   

4.
Insignificant geomagnetic disturbances, which originated during the experimental injection of high-power radio pulses into the magnetosphere-ionosphere system with the help of an HF transmitter of the Sura heating facility, are considered. The experiment was performed at 1840–1900 UT on October 2, 2007 (~2100 MLT) at geomagnetic latitudes close to the zone of generation of the current wedge westward branch, responsible for geomagnetic substorms. The series of two magnetic microsubstorms, with a sudden initial pulse and an insignificant delay relative to the facility switching, was observed at 1840–2000 UT. A disturbance was registered at many stations in the Northern Hemisphere as a global event. The equivalent ionospheric current system of an initial pulse was similar to such a system of the westward auroral surge and had an intensity maximum at Karpogory magnetic observatory, which is the closest station to the Sura facility. Under the conditions of a quiet solar wind and low planetary geomagnetic activity, the AE auroral index correlated with the interplanetary medium parameters (the correlation coefficient reached 0.65) at 1710–2000 UT. It has been confirmed that an initial geomagnetic pulse is generated as a result of radiowave injection. The arguments for and against the generation of microsubstorms due to stimulated precipitation of magnetospheric electrons, as well as the assumption that the geoeffective impact of the interplanetary medium is intensified during the injection of high-power radiowaves near the zone where the westward branch of the current wedge of magnetospheric substorms is generated, are considered.  相似文献   

5.
Based on results of the simultaneous TV observations at Barentsburg high-latitude observatory and Lovozero auroral observatory and using the IMAGE auroral luminosity images, the auroral fine structure and dynamics has been studied during the substorm of December 26, 2000, when the auroral luminosity distribution represented a double oval. It has been indicated that the interaction between the processes proceeding in different magnetospheric regions, the projections of which are the poleward and equatorward edges of the double oval, is observed in auroras in the process of substorm development.  相似文献   

6.
As a rule, bright auroral arcs evolve near the poleward boundary of the auroral oval at the growth phase of a substorm, a phenomenon that is known to occur near the poleward edge of the auroral oval. The closeness of these arcs to the projection of the magnetic separatrix on the night side suggests that their generation is related to magnetic reconnection in the magnetospheric tail in a particular way. In this study this suggestion is confirmed by the fact that integral brightness of the auroral oval at the poleward edge correlates with magnetic field structures in the solar wind that are observed by ACE and Wind satellites at distances of 50–300 RE upstream and are shifted towards the magnetospheric tail with time delays of ~ 10–80 min, consistent with measurements of the solar wind velocity. About 50 examples of this correlation have been found. The possible physical mechanisms of the effect observed are discussed.  相似文献   

7.
In the period of the International Geophysical Year (IGY), almost the entire planet was covered for the first time by ground-based geophysical observations. Their analysis led to two fundamental results: the existence of the auroral oval and auroral (magnetospheric) substorm. At the final stage of the IGY, satellite explorations of the near-Earth space began. The auroral luminosity appeared to be related to the plasma structure of the magnetosphere. That opened new possibilities for parameters diagnostics of the Earth’s magnetosphere on the basis of ground-based aurora observations. The concepts of auroral oval and magnetospheric substorm became paradigms of the new science of solar-terrestrial physics.  相似文献   

8.
地基观测的夜侧极光对行星际激波的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
行星际激波与地球磁层相互作用通常会导致日侧极光活动增强,随后沿着极光卵的晨昏两侧向夜侧扩展的激波极光.行星际激波也可能直接导致夜侧扇区极光活动增强,甚至沉降粒子能通量的数量级可以与典型亚暴相比拟.本文首次利用我国南极中山站和北极黄河站连续多年积累的极光观测数据,对行星际激波与地球磁层相互作用期间地面台站在夜侧扇区(18—06MLT)观测的极光响应进行了分析.对18个极光观测事件的分析结果表明:行星际激波与磁层相互作用可以在夜侧触发极光爆发和极光微弱增强或静态无变化事件;太阳风-磁层能量耦合的效率以及磁层空间的稳定性决定着行星际激波能否触发极光爆发.  相似文献   

9.
This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region 1 current to the region 2 current.  相似文献   

10.
Three models for the magnetosphere-ionosphere coupling feedback instability are considered. The first model is based on demagnetization of hot ions in the plasma sheet. The instability takes place in the global magnetosphere-ionosphere system when magnetospheric electrons drift through a spatial gradient of hot magnetospheric ion population. Such a situation exists on the inner and outer edges of the plasma sheet where relatively cold magnetospheric electrons move earthward through a radial gradient of hot ions. This leads to the formation of field-aligned currents. The effect of upward field-aligned current on particle precipitation and the magnitude of ionospheric conductivity leads to the instability of this earthward convection and to its division into convection streams oriented at some angle with respect to the initial convection direction. The growth rate of the instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to formation of auroral arcs with widths about 10 km. This instability explains many features of such arcs, including their conjugacy in opposite hemispheres. However, it cannot explain the very high growth rates of some auroral arcs and very narrow arcs. For such arcs another type of instability must be considered. In the other two models the instability arises because of the generation of Alfven waves from growing arc-like structures in the ionospheric conductivity. One model is based on the modulation of precipitating electrons by field-aligned currents of the upward moving Alfven wave. The other model takes into consideration the reflection of Alfven waves from a maximum in the Alfven velocity at an altitude of about 3000 km. The growth of structures in both models takes place when the ionization function associated with upward field-aligned current is shifted from the edges of enhanced conductivity structures toward their centers. Such a shift arises because the structures move at a velocity different from the E × B drift. Although both models may work, the growth rate for the model, based on the modulation of the precipitating accelerated electrons, is significantly larger than that of the model based on the Alfven wave reflection. This mechanism is suitable for generation of auroral arcs with widths of about 1 km and less. The growth rate of the instability can be as large as 1 s-1, and this mechanism enables us to justify the development of auroral arcs only in one ionosphere. It is hardly suitable for excitation of wide and conjugate auroral arcs, but it may be responsible for the formation of small-scale structures inside a wide arc.Polar Geophysical Institute, Apatity, Russia  相似文献   

11.
A survey of dayside aurora excitation at 557.7 nm, which was acquired from an all-sky imager at Yellow River Station in Ny-Ålesund, Svalbard, shows that there are 4 intense emission maxima in the dayside oval, centered near 0630/76, 0830/76, 1400/75, and 1600/75 (unit: MLT/MLAT), respectively. Tracing the magnetospheric sources of these cores along geomagnetic field lines, the 0830- and 1400-MLT cores correspond with the prenoon and postnoon magnetospheric boundary layers (MBLs), and the 0630- and 1600-MLT cores are located at the dusk and dawn MBLs, respectively. The potential solar wind-magnetosphere dynamic processes resulting in these auroral features are discussed.  相似文献   

12.
A method for detecting discrete equidistant spectra in high-latitude magnetic observations is proposed. The method finds approximate solutions of the classical Schuster problem, which finds a hidden periodicity in observations with considerable noise. The usage of difference signals makes it possible to increase the latitudinal resolution of the magnetometric diagnostics. The equidistant spectra of two different types have been detected based on the proposed method. The spectra of the first type are interpreted as frequencies of coupled compressional-transverse magnetohydrodyncompressionalamic oscillations in the magnetospheric cavity. The origin of the second type of spectra can be related to a rotating source, i.e., a small-scale vortex of magnetospheric convection. Such an interpretation takes into consideration the Doppler frequency shift caused by entrainment of the ionospheric neutral gas by magnetospheric convection. The results confirm the conclusion that discrete auroral frequencies are stable under disturbed conditions.  相似文献   

13.
对流电场、场向电流和极光区电集流是磁层一电离层耦合的主要物理过程.它们的演化发展时间分别为几分钟至半小时的量级.本文用100°E和300°E的两个地磁经度链附近各11个台站的1min均值地磁H和Z分量资料,分析了1994年4月16-17日磁暴期间磁层耦合过程对极光区和中低纬区电离层扰动的地磁特征.强磁暴开始时,台站所处的地方时位置不同,则观测到的电离层和地磁响应也完全不同.这是磁层对流和一、二区场向电流共同作用的结果.一般说,扰时极光区的西向电集流变化更为强烈.随着耦合的发展,极光区范围会向南北扩展,电集流中心带则向低纬侧移动.在中低纬区,二区场向电流的建立能屏蔽一区场向电流所产生的扰动,并引起反向的电流及地磁变化.由此,中低纬区夜间有可能出现短时间的东向电场,又可通过EXB的垂直向上漂移作用抬升F层等离子体,并发生同一经度链附近的多站电离层h'F同时突增现象.另一方面,磁赤道附近的台站则更多地受内磁层赤道环电流和电离层赤道电集流的影响.  相似文献   

14.
极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.  相似文献   

15.
《Journal of Atmospheric and Solar》2000,62(17-18):1659-1668
Over the last 50 years magnetospheric research has transferred its focus from geomagnetism to space physics, or from inferring the intensity of extraterrestrial currents, through discoveries of the main plasma regions in the magnetosphere, to predicting the processes occurring in the entire solar wind–magnetosphere–ionosphere system. Relating advances in magnetospheric physics to the framework of substorm research, this review paper demonstrates that the “recent” space age since 1960s consisted of (1) an exploratory/discovery phase in which the magnetotail, the plasma sheet, and the acceleration region of auroral particles were identified, and (2) a phase of comprehensive understanding in which we have attempted to comprehend the nature and significance of the near-Earth space environment. This progress in solar-terrestrial physics has coincided with a number of new discoveries of solar and interplanetary phenomena such as magnetic clouds, coronal mass ejections and coronal holes. Computer simulation techniques have been developed to the degree that satellite observations from a very limited number of points can be used to trace and reproduce the main energy processes. We are now entering a new phase in which we hope to be able to predict the dynamic processes that take place in the solar-terrestrial environment.  相似文献   

16.
To quantify the level of low-frequency wave activity of the magnetosphere and IMF, a set of the ULF wave power indices has been introduced. We demonstrate that the ULF activity global level can be very useful in space weather related problems. The application of the interplanetary index to an analysis of auroral activity driving has shown that a turbulent IMF drives auroral activity more strongly than the laminar solar wind does. The enhancements of relativistic electrons at the geosynchronous orbit are known not to be directly related to the intensity of magnetic storms. We found that the electron dynamics correlated well with long-lasting intervals of elevated ground ULF wave index. This fact confirms the importance of magnetospheric ULF turbulence in energizing electrons up to relativistic energies. The time-integrated ULF index demonstrates a significantly higher correlation with electron fluxes, which implies the occurrence of a cumulative effect in the electron energization.  相似文献   

17.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

18.
The distribution of the electric potential, generated by the magnetospheric field-aligned currents flowing along the auroral oval and in the dayside cusp region at the upper atmospheric boundary in the polar ionosphere, is calculated. The obtained electric potential distributions are used to calculate the electric field strength near the Earth’s surface. The results of the model calculations are in good agreement with the electric field measurements at Vostok Antarctic station. It has been indicated that large-scale magnetospheric fieldaligned currents, related to IMF variations, can affect variations in the electric field strength in the polar regions via changes in the electric potential in the polar ionosphere, associated with these currents.  相似文献   

19.
A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ~ ?400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.  相似文献   

20.
To predict global climate change and to implement the Kyoto Protocol for stabilizing atmospheric greenhouse gases concentrations require quantifying spatio-temporal variations in the terrestrial carbon sink accurately. During the past decade multi-scale ecological experiment and observation networks have been established using various new technologies (e.g. controlled environmental facilities, eddy covariance techniques and quantitative remote sensing), and have obtained a large amount of data about terrestrial ecosystem carbon cycle. However, uncertainties in the magnitude and spatio-temporal variations of the terrestrial carbon sink and in understanding the underlying mechanisms have not been reduced significantly. One of the major reasons is that the observations and experiments were conducted at individual scales independently, but it is the interactions of factors and processes at different scales that determine the dynamics of the terrestrial carbon sink. Since experiments and observations are always conducted at specific scales, to understand cross-scale interactions requires mechanistic analysis that is best to be achieved by mechanistic modeling. However, mechanistic ecosystem models are mainly based on data from single-scale experiments and observations and hence have no capacity to simulate mechanistic cross-scale interconnection and interactions of ecosystem processes. New-generation mechanistic ecosystem models based on new ecological theoretical framework are needed to quantify the mechanisms from micro-level fast eco-physiological responses to macro-level slow acclimation in the pattern and structure in disturbed ecosystems. Multi-scale data-model fusion is a recently emerging approach to assimilate multi-scale observational data into mechanistic, dynamic modeling, in which the structure and parameters of mechanistic models for simulating cross-scale interactions are optimized using multi-scale observational data. The models are validated and evaluated at different spatial and temporal scales and real-time observational data are assimilated continuously into dynamic modeling for predicting and forecasting ecosystem changes realistically. in summary, a breakthrough in terrestrial carbon sink research requires using approaches of multi-scale observations and cross-scale modeling to understand and quantify interconnections and interactions among ecosystem processes at different scales and their controls over ecosystem carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号