首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
祁连山东端冷龙岭隆起及其附近地区是青藏高原东北缘与阿拉善地块强烈相互挤压碰撞区域,也是历史地震活动极为强烈区域.为了揭示冷龙岭隆起及其附近区域的断裂深部延伸状况、强震孕育构造背景以及区域动力学特征等,我们在已有大地电磁数据的基础上,新近在冷龙岭隆起附近以及西南侧区域进行了数据采集,获得了一条自西南向北东穿过西秦岭地块、陇西盆地、祁连山冷龙岭隆起和阿拉善地块的长约460 km的大地电磁剖面(LJS-N)数据,并利用三维电磁反演成像技术对全剖面数据进行了反演,同时也对位于该剖面西侧约80 km外的一条大地电磁剖面(DKLB-M)数据进行了三维反演成像.2条电磁探测剖面结果均揭示了祁连—西海原断裂带展现为略向西南倾斜的大型超壳电性边界带,该断裂是祁连山东端冷龙岭隆起区域最重要的主边界断裂,其北东侧和西南侧地块的深部电性结构呈现出截然不同电阻率分布特征,其西南侧的南祁连地块、陇西盆地以及西秦岭地块在地壳尺度展示为埋深深浅不一的高-低-次高阻结构特点,而其北东侧古浪推覆体表现为西南深、东北浅“鼻烟壶”状较完整的高阻结构特征,再往北到阿拉善地块则呈现为高-低-次高水平三层结构样式.1927年M 8.0古浪、1954年M 7.0民勤和2016年M 6.4门源地震的震源都处于统一的高阻古浪推覆体之中.在青藏高原北东向挤压作用的控制下,祁连山东端冷龙岭隆起区域的祁连—西海原断裂、祁连山北缘断裂和红崖山—四道山断裂以叠瓦状向北北东向顺序推覆拓展到阿拉善地块,这种拓展作用是该区中强地震的动力来源.  相似文献   

2.
青藏高原东北缘合作-大井剖面地壳电性结构研究   总被引:14,自引:8,他引:6  
青藏高原东北缘合作-大井剖面的大地电磁探测结果表明,该区域的电性结构呈明显的纵向分层、横向分块的特点,中下地壳普遍存在高导层.青藏高原东北缘西秦岭北缘断裂带、北祁连南缘断裂带、北祁连北缘断裂带(海原断裂带)及龙首山南缘断裂带等区域性断裂带在电性结构模型中均表现为电性梯度带或低阻异常带.电性结构的横向分区与构造上的地块划分有明显的一致性,各个地块的电性结构存在明显差异.西秦岭北缘断裂带作是一个大型的板块边界,但板块结合带附近没有明显逆冲或俯冲痕迹,可能主要以左旋走滑为主.北祁连地块向北仰冲与阿拉善地块向南俯冲边界可能不是海原断裂带,而是龙首山南缘断裂带.西秦岭造山带内的壳内高导层与青藏高原内部存在的高导层具有可对比性,可能是由于部分熔融与含盐水流体共同作用的结果.中祁连地块内的高导层可能是含盐水流体引起的.而北祁连与河西走廊过渡带内的高导层则可能是板块俯冲或仰冲的构造运动痕迹,也可能是由含盐水流体引起的.  相似文献   

3.
宁夏海原大震区西安州—韦州剖面大地电磁探测与研究   总被引:11,自引:10,他引:11       下载免费PDF全文
对穿过宁夏海原大震区西安州(N36.5°,E105.5°)北至同心县韦州(N37.28°,E106.48°)的大地电磁测深剖面,采用远参考道大地电磁方法进行测量和资料处理,得到高精度的数据如视电阻率、阻抗相位、二维偏离度、最佳主轴方位角等. 依据这些数据,对测区的电性结构进行了定性分析和二维定量反演解释. 结果表明,沿剖面可以分成5个电性区块,与西、南华山隆起(Ⅰ)、兴仁堡—海原盆地(Ⅱ)、中卫—清水河盆地(Ⅲ)、中宁—红寺堡盆地(Ⅳ)和鄂尔多斯西缘带(Ⅴ)对应,各区块的边界由大断裂构成. 地表到深度10km左右,西、南华山隆起和鄂尔多斯西缘带呈高阻特性,兴仁堡—海原、中卫—清水河、中宁—红寺堡三个盆地的电阻率较低且呈盆地凹陷形状,盆地基底显示为西南深东北浅的簸箕状起伏形态,基底最深约为8km. 西、南华山隆起、中卫—清水河盆地和鄂尔多斯西缘带的下地壳为“正常”电阻率结构. 兴仁堡—海原和中宁—红寺堡盆地的下地壳上部为“异常”低电阻率带. 1920年的海原大震区存在明显的电性结构差异,震区西南侧和上部区域为相对高阻,东北侧和下部区域为相对低阻.  相似文献   

4.
1927年古浪8级地震的破裂习性及破裂机制的数值模拟   总被引:3,自引:0,他引:3  
1927年古浪8级地震是继1920年海原8.5级地震之后发生在海原一祁连山断裂带上的另一次特大地震。对这次地震的破裂习性,前人的研究结果存在较大分歧。本文在多探槽揭露和地面追踪调查基础上,结合相关的历史资料分析后,认为本次地震是由构成古浪推覆体的天桥沟一黄羊川断裂、皇城双塔断裂冬青顶断裂段以及武威一天祝隐伏断裂等共同作用的结果。对古浪推覆体平面和剖面变形机制的有限元数值模拟结果显示,其应力和应变的集中区主要分布在天桥沟一黄羊川断裂西段、皇城一双塔断裂冬青顶一带以及武威一天祝隐伏断裂和古浪一双塔断裂所在的古浪峡一带,这与地震地表破裂带的展布是一致的,同时也进一步说明了1927年古浪8级地震是该推覆体整体活动的结果。  相似文献   

5.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

6.
对青藏高原东北缘海原弧形构造区(105deg;~107deg;E,36deg;~37.5deg;N)的5条大地电磁测深剖面进行处理分析和二维反演,得到研究区内东西宽约160 km、深约60 km范围的地壳电性细结构. 结果表明: 研究区呈现南西——北东的带状分布特征. 由南西——北东可分为6个电性区块,依次为西吉盆地(Ⅰ)、西、 南华山隆起(Ⅱ)、兴仁堡-海原盆地(Ⅲ)、中卫-清水河盆地(Ⅳ)、中宁-红寺堡盆地(Ⅴ)和鄂尔多斯西缘带(Ⅵ). 各区块在平面上呈北西撒开、 南东收缩的ldquo;扫帚状rdquo;形态;弧形构造区弧顶附近构造完整、规模大,自弧顶向北西、南东两端构造规模逐渐减小. 地表到深度10 km左右,西、南华山隆起和鄂尔多斯西缘带呈高阻特性,西吉、兴仁堡-海原、中卫——清水河和中宁-红寺堡4个盆地的电阻率较低且呈盆地凹陷形状. 其中兴仁堡-海原盆地电性基底最深,显示为南西深北东浅的ldquo;簸箕状rdquo;起伏形态. 研究区发育不连续的壳内低阻带,与该区中、强震活动密切相关. 1920年海原大震区存在明显的电性结构差异,震区南西侧和上部区域为相对高阻,北东侧和下部区域为相对低阻.   相似文献   

7.
1.门源6.4级地震的构造背景及其形变监测资料1986年8月24日门源6.4级地震区及其附近,主要分布有四条总体呈北西西走向的大断裂(图1),即祁连山北缘断裂FD、肃南—老君山—冷龙岭断裂F_1、清大坂—豹子崖—冷龙岭主峰断裂F_2及属于北祁连构造带主干断裂之一的F_3断裂,即昌马—俄博—古浪—海原巨型断裂带的组成部分。上述F_1、F_2断裂于冷龙岭主峰东端均截止于F_3。且这三条断裂  相似文献   

8.
在青藏高原东北缘至鄂尔多斯地块沿玛沁—兰州—靖边剖面进行62个测点的大地电磁观测,采用Robust技术对观测数据进行了处理和张量阻抗分解.分析了视电阻率和阻抗相位曲线、二维偏离度、区域走向.采用RRI二维反演技术进行了资料的反演解释,二维剖面的电性结构显示:(1)玛沁断裂带、兰州深断裂带、马家滩—大水坑断裂带将剖面分为4个电性区块:巴颜喀拉地块、秦祁地块、边界带和鄂尔多斯地块.(2)区块1、2和4的地壳电性结构有类似特点:上地壳为高阻层,下地壳上部为低阻带,下地壳下部到上地幔电阻率随深度逐渐升高.区块3电性成层性差、结构复杂,是现今构造活动较强烈的地区.(3)玛沁断裂带、海原断裂带和罗山—云雾山断裂带为较陡立的超壳断裂带;西秦岭北缘断裂带为壳内断裂带.  相似文献   

9.
本文联合利用甘肃及周边测震台网记录的古浪及周边地区4592次地震的P波绝对到时资料和相对到时资料,采用双差地震层析成像方法反演了古浪震源区高分辨率的三维P波速度精细结构.结果显示,浅部P波速度分布与地表地质之间具有很好的对应关系.皇城—双塔断裂带在6 km以上深度表现为高速异常带,而在6~15 km逐渐转换为明显的低速特征,之后再次转换为高速体.震区下部在10~20 km深度有一个尺度约200 km2的低速异常体,地震发生时破裂首先在该低速体发生,与主震空间位置非常吻合.主震区的岩石结构主要由奥陶纪变质砂岩、石英岩和加里东期的花岗岩等坚硬岩体组成.这种坚硬岩体对应的P波速度结构为高速体,有利于能量积累.武威盆地在20 km以上深度表现为明显的低速异常,在25 km深度之下,整体显示为高速体,表现出稳定块体的特征.表明武威盆地中下地壳和上地幔顶部已插入到冷龙岭隆起带之下.震区小震重新定位发现,皇城—双塔断裂带东、西两段表现出不同的力学运动性质,西段以逆冲运动为主,地震主要发生在断裂的下盘.而东段地震却主要发生在上盘,断层活动以局部拉张为主.我们还首次发现在皇城—双塔断裂带的中段与主破裂呈垂直方向存在有在主震发生时新产生的一条共轭断层,基于小震的断层面参数反演显示该断裂是一高倾角运动性质以右旋为主兼具正断的断裂.  相似文献   

10.
2016年1月21日01时13分在青海省海北州门源县发生了MS6.4地震,震中位置位于青藏高原东北缘地区祁连造山带内的祁连—海原断裂带冷龙岭断裂部分附近,震源深度约11.4 km,震源机制解显示该次地震为一次纯逆冲型地震.我们于2015年7—8月期间完成了跨过祁连造山带紧邻穿过2016年1月21日青海门源MS6.4地震震中区的大地电磁探测剖面(DKLB-M)和古浪地震大地电磁加密测量剖面(HYFP).本文对所采集到的数据进行了先进的数据处理和反演工作,获得了二维电性结构图.结合青藏高原东北缘地区最新获得的相对于欧亚板块2009—2015年GPS速度场分布特征,1月21日门源MS6.4地震主震与余震分布特征以及其他地质与地球物理资料等,探讨了门源MS6.4地震的发震断裂,断裂带空间展布、延伸位置,分析了门源MS6.4地震孕震环境与地震动力学背景等以及祁连山地区深部构造特征等相关问题.所获结论如下:2016年门源MS6.4地震震源区下存在较宽的SW向低阻体,推测冷龙岭断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在反映了介质的力学性质并促进了地震蠕动、滑移和发生;冷龙岭北侧断裂可能对门源MS6.4地震主震和余震的发生起控制作用,而该断裂为冷龙岭断裂在青藏高原北东向拓展过程中产生的伴生断裂,表现出逆冲特征;现今水准场、重力场、GPS速度场分布特征以及大地电磁探测结果均表明祁连—海原断裂带冷龙岭断裂部分为青藏高原东北缘地区最为明显的一条边界断裂,受控于青藏高原北东向拓展和阿拉善地块的阻挡作用,冷龙岭断裂附近目前正处于青藏高原北东向拓展作用最强烈、构造转化最剧烈的地区,这种动力学环境可能是门源MS6.4地震发生的最主要原因,与1927年古浪MS8.0地震和1954年民勤MS7.0地震相似,2016年门源MS6.4地震的发生同样是青藏高原北东向拓展过程中的一次地震事件.  相似文献   

11.
海原一六盘山构造带是青藏高原东北缘地区的一条重要边界,在海原断裂带和六盘山断裂带接触区形成了特殊的马东山挤压阶区,本文对跨过该挤压阶区一条密集测点大地电磁剖面数据进行了处理和二维反演,获得的深部电性结构图像揭示在马东山挤压阶区深部电性结构表现为在高阻背景下镶嵌多个向西南倾斜的低阻条带电阻率结构样式,并在深度约25 km汇聚到中下地壳低阻层内,共同组成"正花状"结构;海原一六盘山构造带西南侧到陇中盆地区间呈现高、低阻相互"楔合"的深部结构特征,而其东北侧的鄂尔多斯西缘带自地表到中下地壳为较完整的高阻块体.另外结合跨过海原断裂带中段和西秦岭造山带的大地电磁探测结果,对海原一六盘山构造带分段性及其两侧的陇中盆地和鄂尔多斯地块的接触关系进行了研究分析.大地电磁探测成果佐证了在海原断裂带中段为具有走滑特点的断裂,而其尾端与六盘山断裂带斜交区域的马东山地区发生了强烈的逆冲推覆与褶皱变形;活动构造研究发现沿海原断裂带所产生的左旋走滑位移被其尾端的马东山、六盘山以东西向的地壳缩短调节吸收,GPS观测表明青藏高原东北缘地区现今构造变形分布在海原一六盘山构造带以西上百公里的范围内,陇中盆地一海原一六盘山构造带和鄂尔多斯地块一线的深部电性结构图像也很好地解释了该区变形状态:海原一六盘山构造带带及西南盘的陇中盆地的中下地壳非常破碎,在青藏高原向北东方向的推挤下容易发生变形,而北东盘鄂尔多斯地块地壳结构完整,很难发生构造变形.对海原一六盘山构造带马东山阶区和龙门山构造带的深部电性结构及变形特征等进行了比较分析,发现该区有与2008年汶川地震相似的深部构造背景,应重视该区强震孕育环境的探测研究.  相似文献   

12.
云南南部地区深部电性结构特征研究   总被引:14,自引:6,他引:8       下载免费PDF全文
在云南南部地区布设了一条孟连-罗平的北东向大地电磁测深剖面,以开展该地区的深部电性结构探测和孕震环境探查.沿该剖面进行了114个大地电磁测深点的观测,经过对观测资料的远参考Robust处理、定性分析和二维反演,得到了沿该剖面地壳、上地幔电性结构模型,从模型的电性结构特征进一步探讨了剖面穿过的3个地震区的深部地震孕育环境.研究结果表明:沿剖面的地壳上地幔电性结构反映出与区域地质构造资料基本一致的构造特征;该区的三个强震带地球深部都存在壳内低阻体,地震发生在电阻率梯度带上;断裂带的两侧块体介质的电阻率差异是强震活动带重要的深部背景.  相似文献   

13.
侯康明 《华南地震》1998,18(3):28-34
在室内航,卫片解释及野外1:5万大比例尺活断层地质填图等专项研究的基础上,论证了1927年古浪8级大震主发震断裂皇城-双塔断裂带的几何分段及运动学特征。依据断层的几何特征,活动时期,活动强度可将该断裂带分为3段,分别为皇城盆地段(西段)、上寺段(中段)和冬青顶段(东段)。其中东段是古浪地震的发震段,与西段和中段相比,它具有活动时代新、活动强度大等特点,属全新世活动段。1927年古浪地震的发生与其特  相似文献   

14.
芦山—康定地区是川滇块体、松潘—甘孜块体和华南块体三个块体过渡的"Y"型交汇区,构造变形十分强烈.本文对EGM2008计算的布格重力异常进行1~5阶离散小波变换,得到三方向分量平方和的平方根(HVDM)图像;利用实测剖面布格重力异常数据,得到剖面的布格重力异常归一化总梯度(NFG)图像.结果分析表明:(1)垂直于龙门山断裂带南段剖面的NFG图像显示推覆构造体前端切割较浅、后端逐步变深至中地壳,说明松潘—甘孜块体在深约10~30km之间存在滑脱构造,在青藏高原东向挤出和四川盆地的阻挡作用下,造成深、浅部构造差异性运动,形成逆冲推覆的龙门山构造带;(2)HVDM图像和剖面的NFG图像均显示龙门山断裂带西南段与中段和东北段不同,松潘—甘孜块体对四川盆地的逆冲推覆作用沿北东方向具有分段性;(3)雅江—洪雅剖面NFG图像显示鲜水河断裂带和龙门山断裂之间存在高梯度变化带,在鲜水河断裂带下方强变形带不仅在20km左右东倾至龙门山断裂带前缘,且逐渐近垂直向下伸入至少到下地壳,反映了两大断裂带交汇区域变形作用较强.川滇块体内部和四川盆地内部则显示低值,说明其变形作用较弱.强烈左旋剪切的鲜水河断裂带对芦山—康定地区构造活动具有主要的控制作用.  相似文献   

15.
西秦岭造山带(中段)及其两侧地块深部电性结构特征   总被引:15,自引:5,他引:10       下载免费PDF全文
本文对跨过西秦岭造山带(中段)的阿坝—若尔盖—临潭—兰州大地电磁剖面(WQL-L1)所采集到的数据进行了精细化处理分析和二维反演研究,结合跨过2013年岷县漳县地震区的WQL-L6剖面大地电磁探测结果和以往的地质与地球物理资料,对西秦岭造山带(中段)的深部电性结构、主要断裂带延伸状况以及与南北两侧地块的接触关系等进行了分析研究,结果表明:东昆仑断裂带塔藏段、迭部—白龙江断裂和光盖山—迭山断裂带共同组成了东昆仑断裂系统,分隔了松潘—甘孜地块和西秦岭造山带(中段);西秦岭北缘断裂带为主要的高角度南倾大型电性边界带,延伸深度穿过莫霍面;临潭—宕昌断裂带具有电性边界带特征,其延伸情况具有东、西差异.西秦岭造山带(中段)自地表到深度约20km范围表现为东北和西南浅、中部深的倒"梯形"高阻层,在高阻层之下广泛发育低阻层,低阻层与高阻层相互契合,呈现相互挤压堆积的式样,其西南侧的松潘—甘孜地块中下地壳存在西南深、东北浅低阻层,其东北侧的陇西盆地具有稳定的成层性结构,显示出西秦岭造山带(中段)正处于松潘—甘孜地块向北挤压和陇西盆地向南的阻挡挤压作用中.松潘—甘孜地块从西南向东北推挤、东北侧陇西盆地相对阻挡的相互作用是2013年岷县漳县6.6级地震发生的外部动力学机制,同时地震震源区特殊介质属性是该次地震发生的内部因素.西秦岭造山带(中段)中上地壳倒"梯形"高阻体埋深西薄、东厚的分段差异与该段内部中强地震分布差异有关.东昆仑断裂玛沁段和塔藏段内部的深部电性结构差异和延伸状况与东昆仑断裂自西向东走滑速率减小有内在联系.  相似文献   

16.
Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°~107°E,36°~37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (Ⅰ), Xihuashan-Nanhuashan uplift (Ⅱ), Xingrenbu-Haiyuan basin (Ⅲ), Zhongwei-Qingshuihe basin (Ⅳ), Zhongning-Hongsibu basin (Ⅴ) and west-margin zone of Ordos (Ⅵ) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections Ⅱ and Ⅵ, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section Ⅲ is the deepest, displaying a "dustpan" shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.  相似文献   

17.
The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides, resulting in massive loss of people''s life and property. However, integrated investigations and results regarding the landslides triggered by this earthquake are rare; such situation hinders the deep understanding of these landslides such as scale, extent, and distribution. With the support of Google Earth software, this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake (VIII-XI degree) using the artificial visual interpretation method, and further analyze the spatial distribution and impact factors of these landslides. The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone, with a total landslide area of 58.6 km2. The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle. Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation, slope gradient, slope direction, strata, seismic intensity, faults and rivers. The elevation of 2 000-2 800 m is the high-incidence interval of the landslide. The landslide density is larger with a higher slope gradient. East and west directions are the dominant sliding directions. The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides. The X intensity zone triggered the most landslides. In addition, landslides often occur in regions near rivers and faults. This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号