首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An observational study in the middle reach of Delaware Bay shows that vertical stratification is often enhanced during flood tide relative to ebb tide, contrary to the tidal variability predicted by the tidal straining mechanism. This tidal period variability was more pronounced during times of high river discharge when the tidally mean stratification was higher. This tidal variability in stratification is caused by two reinforcing processes. In the along-channel direction, the upstream advection of a salinity front at mid-depth causes an increase of the vertical stratification during the flood tide and a decrease during the ebb tide. In the cross-channel direction, the tilting of isohalines during the ebb reduces vertical stratification, and the subsequent readjustment of the salinity field during the flood enhances the water column stability. A diagnosis of the cross-channel momentum balance reveals that the lateral flows are driven by the interplay of Coriolis forcing and the cross-channel pressure gradient. During the flood tide, these two forces mostly reinforce each other, while the opposite occurs during the ebb tide. This sets up a lateral circulation that is clockwise (looking landward) during the first half of the flood and then reverses and remains counterclockwise during most of the ebb tide. Past maximum ebb, the cross-channel baroclinic term, overcomes Coriolis and reverses the lateral flows.  相似文献   

2.
Data collected from the York River estuary demonstrate the importance of asymmetries in stratification to the suspension and transport of fine sediment. Observations collected during two 24-h deployments reveal greater concentrations of total suspended solids during the flood phase of the tide despite nearly symmetric near-bed tidal current magnitude. In both cases, tidally averaged net up-estuary sediment transport near the bed was clearly observed despite the fact that tidally averaged residual near-bed currents were near zero. Tidal straining of the along-channel salinity gradient resulted in a stronger pycnocline lower in the water column during the ebb phase of the tide and appeared to limit sediment suspension. Indirect measurements suggest that the lower, more intense, pycnocline on the ebb acted as a barrier, limiting turbulent length scales and reducing eddy diffusivity well below the pycnocline, even though the lower water column was locally well mixed. In order to more conclusively link changes in stratification to properties of near-bed eddy viscosity and diffusivity, longer duration tripod and mooring data from an additional experiment are examined, that included direct measurement of turbulent velocities. These additional data demonstrate how slight increases in stratification can limit vertical mixing near the bed and impact the structure of the eddy viscosity below the pycnocline. We present evidence that the overlying pycnocline can remotely constrain the vertical turbulent length scale of the underlying flow, limiting sediment resuspension. As a result, the relatively small changes in stratification caused by tidal straining of the pycnocline allow sediment to be resuspended higher in the water column during the flood phase of the tide, resulting in preferential up-estuary transport of sediment.Responsible Editor: Iris Grabemann  相似文献   

3.
Data from time series of transects made over a tidal period across a section of the upper Chesapeake Bay, USA, reveal the influence of lateral dynamics on sediment transport in an area with a deep channel and broad extents of shallower flanks. Contributions to lateral momentum by rotation (Coriolis plus channel curvature), cross channel density gradients and cross channel surface slope were estimated, and the friction and acceleration terms needed to complete the balance were compared to patterns of observed lateral circulation. During ebb, net rotation effects were larger because of river velocity and reinforcement of Coriolis by curvature. During flood, stratification was greater because of landward advection of strong vertical density gradients. Together, the ebb intensified lateral circulation and flood intensified stratification focused sediment and sediment transport along the left side of the estuary (looking seaward). The tendency for greater stratification on flood and net sediment flux toward the left-hand shoal are contrary to more common models which, in the northern hemisphere, predict greater resuspension on flood and move sediment toward the right-hand shoal. These tidal asymmetries interact with the lateral circulation to focus net sediment flux on the left side of the estuary, and to produce net ebb directed sediment transport at the surface of the same order of magnitude as net flood directed sediment transport at the bottom.  相似文献   

4.
An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1–1 m s − 1 and maximum water depth, 10–60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolis-induced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise density-induced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries.  相似文献   

5.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

6.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

7.
Observations of the flow field over an elongated hollow (bathymetric depression) in the lower Chesapeake Bay showed tidally asymmetric distributions. Current speed increased over the landward side of the hole during flood tides and decreased in the deepest part of the hollow during ebb tides. A simple conceptual analysis indicated that the presence of a horizontal density gradient can generate the asymmetric spatial variations of flow structure depending on the sign of the horizontal density gradient. When water density decreases downstream, the velocity increases over the downstream edge of the hollow. Conversely when water density increases downstream, the flow decreases over the hollow more than a case without a horizontal density gradient. The conceptual analysis is confirmed by numerical experiments of simplified hollows in steady open channel flows and of an idealized tidal estuary. These hollows also alter the local current field of tidally averaged estuarine exchange flows. The residual depth-averaged currents over a hollow show a two-cell circulation when Coriolis forcing is neglected and an asymmetric two-cell circulation, with a stronger cyclonic eddy, when Coriolis forcing is included.  相似文献   

8.
Few hyperpycnal flows have ever been observed in marine environments although they are believed to play a critical role in sediment dispersal within estuarine and deltaic depositional systems. The paper describes hyperpycnal flows observed in situ off the Huanghe (Yellow River) mouth, their relationship to tidal cycles, and the mechanisms that drive them. Simultaneous observations at six mooring stations during a cruise off the Huanghe mouth in the flood season of 1995 suggest that hyperpycnal flows observed at the river mouth are initiated by high concentrations of sediment input from river and modulated by tides. Hyperpycnal flows started near the end of ebb tides, when near‐bottom suspended sediment concentration (SSC) increased rapidly and salinity decreased drastically (an inverse salt wedge). The median grain size of suspended particles within the hyperpycnal layer increased, causing strong stratification of the suspended sediments in the water column. Towards the end of flood tides, the hyperpycnal flow attenuated due to frictions at the upper and lower boundaries of the flow and tidal mixing, which collapsed the stratification of the water column. Both sediment concentration and median grain size of suspended particles within the bottom layer significantly decreased. The coarser sediment particles were deposited and the hyperpycnal flows stopped. The intra‐tidal behaviors of hyperpycnal flows are closely associated with the variations of SSC, salinity, and stratification of the water column. As nearly 90% of riverine sediment is delivered to the sea during the flood seasons when hyperpycnal flows are active, hyperpycnal flows at the Huanghe mouth and the river's high sediment loads have caused rapid accretion of the Huanghe delta. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This study investigates the hydrodynamic characteristics of the lower, middle, and upper sectors of a highly stratified estuary, the Itajaí-Açu river estuary (south of Brazil ∼27° S/48.5° W). The study is based on a 25-h field campaign with three sampling stations positioned at 2, 17, and 38 km inward from the river mouth, during low river discharge condition and spring tide. The experimental data gathered was reduced and analyzed in terms of distribution of variables in time and space tide average vertical profiles and decomposition of the advective transport of salt and suspended particulate matter (SPM). Tidal range was nearly constant along the estuary, presenting time lag of about 2 h between lower and upper estuary. The ebb discharge peaks were about twice the discharge flood peaks and occurred simultaneously. The tide was the main determining agent in the lower estuary, where currents, salt stratification, and SPM distributions presented a repetitive behavior. In the middle estuary, the tide effects were also observed, but the presence of saline waters decreased along the time due to increasing river discharge during the campaign. The distribution of SPM in the mid- and upper estuary presented patched pattern not associated with tides and may be attributed to short-term flood contributions of tributaries. Currents presented ebb dominance in all three sectors; in the middle and upper estuary, they presented also a time asymmetry, with ebb currents longer than flood. The advective transport of salt in the lower estuary was upstream, with dominance of gravitational circulation term. In the mid-estuary, there was practically no transport, with balance between fluvial discharge (downstream) and tidal correlation (upstream). The advective transport of SPM was upstream in the lower estuary and downstream in the mid- and upper estuary, being dominated by gravitational circulation in the former and fluvial discharge in the others.  相似文献   

10.
Contemporary hydrodynamics and morphological change are examined in a shallow microtidal estuary, located on a wave-dominated coast (Port Stephens, NSW, Australia). Process-based numerical modelling is undertaken by combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. Model results suggest that the complex estuarine bathymetry and geometry give rise to spatial variations in the tidal currents and a marked asymmetry between ebb and flood flows. Sediment transport paths correspond with tidal asymmetry patterns. The SE storms significantly enhance the quantities of sediment transport, while locally generated waves by the westerly strong winds also are capable of causing sediment entrainment and contribute to the delta morphological change. The wave/wind-induced currents are not uniform with flow over shoals driven in the same direction as waves/winds while a reverse flow occurring in the adjacent channel. The conceptual sediment transport model developed in this study shows flood-directed transport occurs on the flood ramp while ebb-directed net transport occurs in the tidal channels and at the estuary entrance. Accretion of the intertidal sand shoals and deepening of tidal channels, as revealed by the model, suggest that sediment-infilling becomes advanced, which may lead to an ebb-dominated estuary. It is likely that a switch from flood- to ebb-dominance occurs during the estuary evolution, and the present-day estuary acts as a sediment source rather than sediment sink to the coastal system. This is conflictive to the expectation drawn from the estuarine morphology; however, it is consistent with previous research suggesting that, in an infilling estuary, an increase in build-up of intertidal flats/shoals can eventually shift an estuary towards ebb dominance. Thus, field data are needed to validate the result presented here, and further study is required to investigate a variety of estuaries in the Australian area.  相似文献   

11.
We present an analytical model to decompose complex along-channel and transverse residual flows into components induced by individual mechanisms. The model describes the transverse distribution of residual flows in tidally dominated estuaries. Scaling and perturbation techniques are used to obtain analytical solutions for residual flows over arbitrary across-channel bed profiles. The flows are induced by horizontal density gradients, tidal rectification processes, river discharge, wind, channel curvature and the earth's rotation. These rectification processes induce residual flows that are up-estuary to the right and down-estuary to the left of an estuarine channel (looking up-estuary in the northern hemisphere). The tidal rectification processes fundamentally change the transverse structure of along-channel residual flows in many tidal estuaries, as these processes cause the flows to be internally asymmetric about the mid-axis of the channel for relatively large tidal velocities, steep channels or narrow estuaries. In addition, velocity scales are derived from the analytical solutions to estimate the relative importance of the various residual flow mechanisms from estuarine parameters. A case study of a transect across the Upper Chesapeake Bay showed that important features of the residual flow observed in that transect are reproduced and explained by the analytical model. The velocity scales were able to identify the relevant residual flow mechanisms as well. The tidal rectification processes considered here result from advection of along-channel tidal momentum by Coriolis-induced transverse tidal currents.  相似文献   

12.
A three-dimensional, hydrostatic, primitive equation numerical model with modern turbulence closures is used to explore lateral circulation and the associated transport of sediments in idealized, moderately to highly stratified estuaries. The model results suggest that boundary mixing on a sloping bottom can drive a significant amount of lateral circulation. This mechanism has received little attention to date in the estuarine literature. Good agreement with an analytical solution and similar vertical structures of lateral flows to observations from the Hudson River estuary support the importance of the boundary mixing mechanism. Boundary mixing is at least as important as differential advection for the modeled scenarios, when the two mechanisms are evaluated using the salt balance equation for model runs without rotation. Linearly superposing analytical solutions for lagged boundary mixing lateral flow and Ekman-forced lateral flow yields a good representation of the near-bottom lateral flow from the model with rotation. The 2 h lag required for the boundary mixing solution is roughly equal to the vertical diffusion time scale, indicating that lateral flow adjustment depends on development of a bottom mixed layer. Sediment dynamics at cross sections seaward and landward of the salt intrusion are very different. Seaward of the salt intrusion, sediments are eroded in the channel and preferentially deposited on the right slope (looking seaward), mainly due to the combination of high sediment concentration in the channel during flood with strong up-slope transport on that side (tidal pumping). Lateral sediment re-distribution landward of the salt intrusion is negligible due to weak residual lateral circulation.  相似文献   

13.
A study is made of the effect of wind and tides on the hydrodynamics of the shallow inner basins of mediterranean estuaries. The paper includes a case study of Harvey Estuary in southwestern Australia where salinity and temperature data exist for 11 years during the 1980s and 1990s when that estuary experienced massive annual blue-green algal blooms. An analysis is made of salt exchange through the channels that join estuarine basins of this class to either the ocean or, as in the case of Harvey Estuary, to another shallow estuarine basin. A detailed three-dimensional numerical model is also implemented for the basin of Harvey Estuary. It is concluded that exchange through the channel is dominated by the (mainly diurnal) tides, despite the general micro-tidal nature of this class of estuary, although the efficiency of this process is found to be controlled by the length of the channel. Wind set-up in the basin also produces channel exchange and for Harvey Estuary this is about 20% of the exchange due to tides. Baroclinic flow through the channel is also capable of producing significant exchange but this is suppressed by the tidal currents in the channel except immediately after riverflow. Salt transport along the basins of this class of estuary is mainly driven by the longitudinal density gradient and the strength of this process is controlled by vertical mixing from the wind. However, there is also significant salt transport from wind-induced advection, the effect of which changes seasonally with the direction of the salt gradient.  相似文献   

14.
This paper reports the results of continuous monitoring of turbidity, water depth, salinity (using an Optical Backscatter Sensor (OBS)), and current velocity (using a Current meter (SLC9-2)) in the South Passage of the Changjiang Estuary over a spring–neap period in February 2003 (dry season). The turbidity measured via OBS was closely correlated with the suspended sediment concentration (SSC), which was highly variable. Over the study period, the SSC in the middle layer ranged from 110 to 1400 mg/l. The minimum SSC occurred during a late ebb tide, and the maximum SSC occurred during a late flood tide. On average, the SSC was 1.5 times higher during flood tide than during ebb tide. Vertically within the water column, SSC increased downward, with the ratio of SSC measured near the bed to that measured at the surface ranging from 1.90 to 18.3. The temporal variability in SSC is jointly governed by tides and wind-induced waves, whereas the vertical variability in SSC is attributed to the effect of gravity and vertical water circulation.  相似文献   

15.
The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.  相似文献   

16.
The long-term variability of the non-tidal circulation in Southampton Water, a partially mixed estuary, was investigated using 71-day acoustic Doppler current profiler (ADCP) time series. The data show evidence that the spring–neap tidal variability of the turbulent mixing modulates the strength of the non-tidal residual circulation, with subtidal neap tide surface flows reaching 0.12 m s–1 compared to <0.05 m s–1 at spring tides. The amplitude of the neap-tide events in this non-tidal circulation is shown to be related to a critical value of the tidal currents, illustrating the strong dependence on tidal mixing. The results suggest that the dominant mechanism for generating these neap-tide circulation events is the baroclinic forcing of the horizontal density gradient, rather than barotropic forcing associated with ebb-induced periodic stratification. While tidal turbulence is thought to be the dominant control on this gravitational circulation, there is evidence of the additional effect of wind-driven mixing, including the effects of wind fetch and possibly wave development with along-estuary winds being more efficient at mixing the estuary than across-estuary winds. Rapid changes in atmospheric pressure also coincided with fluctuations in the gravitational circulation. The observed subtidal flows are shown to be capable of rapidly flushing buoyant material out of the estuary and into the coastal sea at neap tides.Responsible Editor: Iris Grabemann  相似文献   

17.
《国际泥沙研究》2019,34(5):496-508
A tidal bore is a water discontinuity at the leading edge of a flood tide wave in estuaries with a large tidal range and funneling topography. New measurements were done in the Garonne River tidal bore on 14–15 November 2016, at a site previously investigated between 2010 and 2015. The data focused on long, continuous, high-frequency records of instantaneous velocity and suspended sediment concentration (SSC) estimate for several hours during the late ebb, tidal bore passage and flood tide. The bore passage drastically modified the flow field, with very intense turbulent and sediment mixing. This was evidenced with large and rapid fluctuations of both velocity and Reynolds stress, as well as large SSCs during the flood tide. Granulometry data indicated larger grain sizes of suspended sediment in water samples compared to sediment bed material, with a broader distribution, shortly after the tidal bore. The tidal bore induced a sudden suspended sediment flux reversal and a large increase in suspended sediment flux magnitude. The time-variations of turbulent velocity and suspended sediment properties indicated large fluctuations throughout the entire data set. The ratio of integral time scales of SSC to velocity in the x-direction was on average TE,SSC/TE,x ~ 0.16 during the late ebb tide, compared to TE,SSC/TE,x ~ 0.09 during the late flood tide. The results imply different time scales between turbulent velocities and suspended sediment concentrations.  相似文献   

18.
Observation data of along-estuary and lateral current velocities over a transect located at the South Channel of the Yangtze estuary was obtained during a spring tide in August 2011.Harmonic analysis was done on the current velocities to get a mean component and a semi-diurnal component.Based on these two components,the driving mechanisms of mean lateral flow and M2 lateral tidal flow are shown and analyzed respectively.The dominant driving force of mean lateral flow is nonlinear advection and that of lateral M2 tidal flow is Coriolis force.The friction plays an important role near the bottom and surface for both lateral mean flow and M2 tidal flow.  相似文献   

19.
This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium‐sized watersheds (72 000 and 66 000 km2 of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi‐arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m3 s?1) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi‐arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Despite vigorous tidal and wind mixing, observations in an estuarine tidal inlet in the Wadden Sea show that during part of the tidal cycle, vertical stratification and internal waves may still develop. Acoustic Doppler current profiler (ADCP) and conductivity, temperature, depth observations, collected over the past 6 years at 13 h anchor stations (ASs), reveal that these occur especially during slack tide, when there is little wind and large freshwater discharge from nearby Lake IJssel. Measurements with a moored ADCP show that in the same tidal phase, strong cross-channel circulation develops, which may suddenly reverse circulation sense due to passing density fronts. In the vertically stratified phase that follows after the front passage, propagating mode-one solitary internal waves are observed. These are resonantly generated during decelerating tidal ebb currents when the (shear) flow passes a transcritical regime (Froude number equal to 1). A combination of photographs (including one from the International Space Station), bathymetric data, and ASs data leads to the discovery of yet another source of internal waves in this area, produced during slackening tide by propagating lee waves that develop over a deep trench. We suggest that both the cross-channel circulation as well as the (solitary) internal waves may locally be of importance for the (re)distribution and transport of sediments and nutrients and may influence tidally averaged transports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号