首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Continental Shelf Research》2007,27(10-11):1548-1567
A two-way nested coupled tide-surge prediction model was established and applied in the Taiwan Strait and adjacent sea area in this study. This two-dimensional (2D) model had a fine horizontal resolution and took into account the interaction between storm surges and astronomical tides, which made it suitable for depicting the complicated physical properties of storm surges in the Taiwan Strait. A two-way nesting technique and an open boundary condition developed from Flather's radiation condition and Røed and Smedstad's local mode idea, were successfully implemented in the model. A simulation experiment showed that the open boundary condition could be used in the coupled tide-surge model and that the performance of the two-way nested model was slightly superior in accuracy to that of the one-way nested one.The fluctuations of storm surge residuals with tidal period at Sansha and Pingtan tide stations during the period of typhoon Dan in 1999 were well reproduced by the model, with the coupling effect between storm surges and tides indicating that the effect of astronomical tides upon typhoon surges should be considered in a storm-surge prediction model for the Taiwan Strait. The forecast experiment during typhoon Talim in 2005 showed that the storm surge prediction outputs by the model were better in the early 20 h of the forecast period of each model run than those in the later period due to the prediction accuracy of the typhoon track, maximum winds, and central air pressures.  相似文献   

2.
3.
We present an idealized network model for storm surges in the Wadden Sea, specifically including a time-dependent wind forcing (wind speed and direction). This extends the classical work by H.A. Lorentz who only considered the equilibrium response to a steady wind forcing. The solutions obtained in the frequency domain for the linearized shallow-water equations in a channel are combined in an algebraic system for the network. The velocity scale that is used for the linearized friction coefficient is determined iteratively. The hindcast of the storm surge of 5 December 2013 produces credible time-varying results. The effects of storm and basin parameters on the peak surge elevation are the subject of a sensitivity analysis. The formulation in the frequency domain reveals which modes in the external forcing lead to the largest surge response at coastal stations. There appears to be a minimum storm duration, of about 3–4 h, that is required for a surge to attain its maximum elevation. The influence of the water levels at the North Sea inlets on the Wadden Sea surges decreases towards the shore. In contrast, the wind shearing generates its largest response near the shore, where the fetch length is at its maximum.  相似文献   

4.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

5.
Barotropic responses of the East China Sea to typhoon KOMPASU are investigated using a high-resolution, three-dimensional, primitive equation, and finite volume coastal ocean model. Even the fact that the typhoon KOMPASU only brushed across the brink of China mainland without landing, it still imposed great influence across China's east coastal area, where storm surges ranging from 35 to 70 cm were intrigued during this event and a large wake of water setdown due to the outward radial transport driven by the cyclonic wind stress was generated after the KOMPASU traveled across the Yellow Sea. Analysis of the numerical results reveals that the barotropic waves propagating along the coast after the typhoon's landing can be identified as Kelvin wave and the currents associated with the storm are geostrophic currents. A series of model runs are initiated to diagnose the effects of wind stress, atmospheric pressure, and storm track variation on the surge's spatial distribution in the East China Sea. The barotropic waves affected by the atmospheric disturbance due to the typhoon in deep Pacific Ocean travel far more rapidly, arriving at the coastal regions at least 60 h ahead of the typhoon. The wave amplitudes are merely 0.2–0.4 cm and damp gradually due to friction. The model experiments also confirm that the surge levels in nearshore regions are highly dominated by winds, whereas the water level variations in deeper areas are controlled by the atmospheric pressure forcing during typhoon events in the East China Sea.  相似文献   

6.
The structures and evolution of the coastal-trapped waves (CTW) along the northern coast of the South China Sea (SCS) in the year?1990 are studied using observed hourly sea level records collected from four sites around the northern SCS and a three-dimensional numerical model with realistic bathymetry and wind forcing. Analysis of the yearlong records of the observed sea level data indicates that the sea level variations are highly correlated between the stations and the sea level variability propagates southwestward along the coast. The sea level signals traveling from northeast to southwest along the coast with a propagation speed of 5.5–17.9?m?s?1 during both the typhoon season and the winter month show the characteristics of a CTW. The wave speed is faster between stations Shanwei and Zhapo than that between Xiamen and Shanwei. Sea level variations during both typhoon season and winter month are reasonably well represented by the numerical model. The model runs focused on the wave signals related to typhoons and winter storm show that the CTW propagating southwestward along the coast can be reinforced or decreased by the local wind forcing during its propagation and there are apparent differences in the propagation characteristics between the waves along the mainland and those traveling around Hainan Island. The abrupt change of the shelf width and coastline around Leizhou Peninsula and Hainan Island are responsible for strong scattering of CTWs from one mode into higher modes. The alongshore velocities across different transects associated with CTW are investigated to examine the vertical structures of the waves. The alongshore velocity structures at transects during different events are related to the combined effect of stratification and shelf profile, which can be estimated using the Burger number. The empirical orthogonal function analysis of alongshore velocity and nodal lines of the mode structure suggest mode two CTWs in transect S2 during typhoon season and mode 1 CTWs during winter. Sensitivity model experiments are also performed to demonstrate the effects of local wind and topography on the wave propagation.  相似文献   

7.
Discontinuous Galerkin methods for modeling Hurricane storm surge   总被引:1,自引:0,他引:1  
Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability.Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution.The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh (h) and polynomial order (p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method.In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.  相似文献   

8.
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25–27 October 2013), and about a month later, the storm Xaver (5–7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20–30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.  相似文献   

9.
An unstructured mesh finite element model of the sea region off the west coast of Britain is used to examine the storm surge event of November 1977. This period is chosen because accurate meteorological data to drive the model and coastal observations for validation purposes are available. In addition, previous published results from a coarse-grid (resolution 7 km) finite difference model of the region and high-resolution (1 km) limited area (namely eastern Irish Sea) model are available for comparison purposes. To enable a “like with like” comparison to be made, the finite element model covers the same domain and has the same meteorological forcing as these earlier finite difference models. In addition, the mesh is based on an identical set of water depths. Calculations show that the finite element model can reproduce both the “external” and “internal” components of the surge in the region. This shows that the “far field” (external) component of the surge can accurately propagate through the irregular mesh, and the model responds accurately, without over- or under-damping, to local wind forcing. Calculations show significant temporal and spatial variability in the surge in close agreement with that found in earlier finite difference calculations. In addition, root mean square errors between computed and observed surge are comparable to those found in previous finite different calculations. The ability to vary the mesh in nearshore regions reveals appreciable small-scale variability that was not found in the previous finite difference solutions. However, the requirement to perform a “like with like” comparison using the same water depths means that the full potential of the unstructured grid model to improve resolution in the nearshore region is inhibited. This is clearly evident in the Mersey estuary region where a higher resolution unstructured mesh model, forced with uniform winds, had shown high topographic variability due to small-scale variations in topography that are not resolved here. Despite the lack of high resolution in the nearshore region, the model showed results that were consistent with the previous storm surge models of the region. Calculations suggest that to improve on these earlier results, a finer nearshore mesh is required based upon accurate nearshore topography.  相似文献   

10.
Typhoon-induced waves and surges are important when predicting potential hazards near coastal regions. In this paper, we applied a coupled modeling system for ocean–wave interaction to examine prediction capabilities for typhoon-induced waves and surges around the Korean Peninsula. To identify how ocean–wave coupling impacts wave and surge simulations during typhoon conditions, a set of comparative experiments was performed during Typhoon Bolaven (2012): (1) a fully coupled ocean–wave model, (2) a one-way coupled ocean–wave model without surface current feedback and ocean-to-wave water levels, and (3) a stand-alone ocean model without considering wave-based sea surface roughness (SSR). When coupled with the ocean model, the surface current reduced significantly the wave height on the right-hand side of the advancing typhoon track and improved prediction accuracy along the southern coast of Korea. Compared with the observed surge levels, the simulated surge height yielded improved results for peak height magnitude and timing compared with the uncoupled model. For wave-to-surge feedback, we found that wave-induced SSR plays an important role by modulating wind stress in the surface layer. The modulated wind stress directly affected the surge height, which improved surge peak prediction during the typhoon.  相似文献   

11.
Planning and design of coastal protection rely on information about the probabilities of very severe storm tides and the possible changes that may occur in the course of climate change. So far, this information is mostly provided in the form of high percentiles obtained from frequency distributions or return values. More detailed information and assessments of events that may cause extreme damages or have extreme consequences at the coast are so far still unavailable. We describe and compare two different approaches that may be used to identify highly unlikely but still physically possible and plausible events from model simulations. Firstly, in the case when consistent wind and tide-surge data are available, different metrics such as the height of the storm surge can be derived directly from the simulated water levels. Secondly, in cases where only atmospheric data are available, the so called effective wind may be used. The latter is the projection of the horizontal wind vector on that direction which is most effective in producing surges at the coast. Comparison of events identified by both methods show that they can identify extreme events but that knowledge of the effective wind alone does not provide sufficient information to identify the highest storm surges. Tracks of the low-pressure systems over the North Sea need to be investigated to find those cases, where the duration of the high wind is too short to induce extreme storm tides. On the other hand, factors such as external surges or variability in mean sea level may enhance surge heights and are not accounted for in estimates based on effective winds only. Results from the analysis of an extended data set suggest that unprecedented storm surges at the German North Sea coast are possible even without taking effects from rising mean sea level into account. The work presented is part of the ongoing project “Extreme North Sea Storm Surges and Their Consequences” (EXTREMENESS) and represents the first step towards an impact assessment for very severe storm surges which will serve as a basis for development of adaptation options and evaluation criteria.  相似文献   

12.
Typhoons can cause substantial sea surface cooling (typically 2–4 °C), which is usually biased to the right side of the storm track. Under influence of the complex bathymetry of the southern Taiwan Strait (TS), two types of sea surface temperature (SST) response, cooling and warming, each associated with a different type of typhoon track were identified using satellite and mooring observations. When a typhoon moved westward (or northwestward) and passed through the TS (track A), the SST cooling in the TS was biased toward the left of the storm track. Numerical model results indicated that in track A, strong wind stress accelerates the flow east of the Taiwan Banks and drove the bottom flow to uplift due to the topography. Moreover, both wind stress and wind stress curl enhanced the Luzon loop. After the typhoon passed, the mean circulation was modified around strong cooling in the southern TS, causing more South China Sea surface water to be distributed to the Kuroshio region. However, when a typhoon moved westward (or northwestward) and passed south of the TS, SST warming was induced in the southern TS (track B). The model results indicated that when the typhoon passed to the south of the TS, the typhoon-induced horizontal divergent flow travelled to the north, where it encountered the shallower shelf of the TS that was confined to the water, causing warm water transported into this area to accumulate and downwelling to occur. This can be regarded as redistributing the heat content in the shelf area. After the typhoon, the thickened mixed layer resulting from downwelling prevented the formation of near-inertial waves and reduced the vertical mixing.  相似文献   

13.
Numerous estuaries of the world have been strongly modified by human activities.These interferences can make great adjustments of not only sediment transport processes,but also the collective behavior of the estuary.This paper provides a typical case of a heavily modified coastal plain estuary of Sheyang on the China coast,where a sluice barrage was built in 1956 to stop the intrusions of storm surges and saline water.Four sets of instrumented tripods were simultaneously deployed along a cross-shore transect to continuously observe near-bed flow currents and sediment transport.The in-situ surveys lasted over a spring and neap tide cycle when a strong wind event occurred in the neap tide.Comparisons of flows and sediment transport between tide-dominated and wind-dominated conditions demonstrated the important role of episodic wind events in flows and sediment transport.The wind-induced currents,bottom stresses,and sediment transport rates were significantly greater when wind was present than corresponding quantities induced by the tides.The long-shore sediment transport induced by winds exceeds the cross-shore component,especially near the river mouth bar.These results indicate the noticeable importance of wave-dominated coastal processes in shaping topographic features.A regime shift of estuarine evolution under highly intense human forcing occurs from fluvial to marine processes.This finding suggests that the management strategy of the estuarine system should focus on the restoration of estuarine processes,rather than the present focus on inhibition of marine dynamics.  相似文献   

14.
The 1953 North Sea floods, the Big Flood, was one of the worst natural disasters in Europe in modern times and is probably one of the most studied severe coastal floods. Several factors led to the devastating storm surge along the southern North Sea coast in combination of strong and sustained northerly winds, invert barometric effect, high spring tide, and an accumulation of the large surge in the Strait of Dover. However, the storm waves and their roles during the 1953 North Sea storm surge are not well investigated. Therefore, the effect of wave setup due to breaking waves in the storm surge processes is investigated through numerical experiments. A coupled process-based tide-wave-surge model was used to investigate and simulate the storm surge in the North Sea during January 31–February 1, 1953 and validated by comparing with historical water level records at tide gauges and wave observations at light vessels in the North Sea. Meteorological forcing inputs for the period, January 27–February 3, 1953 are reproduced from ERA-20C reanalysis data with a constant correction factor for winds. From the simulation results, it is found that, in addition to the high water due to wind setup, wave setup due to breaking waves nearshore play a role of approximately 10% of the storm surge peaks with approximately 0.2 m. The resulting modeling system can be used extensively for the preparedness of the storm surge and wave of extreme condition, and usual barotropic forecast.  相似文献   

15.
Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.  相似文献   

16.
Bo Yang  Jinyu Sheng 《Ocean Dynamics》2008,58(5-6):375-396
This study examines main physical processes affecting the three-dimensional (3D) circulation and hydrographic distributions over the inner Scotian Shelf (ISS) in June and July 2006 using a nested-grid coastal ocean circulation modeling system known as the NCOPS-LB. The nested-grid system has five relocatable downscaling submodels, with the outermost submodel of a coarse horizontal resolution of (1/12)° for simulating storm surges and barotropic shelf waves over the Eastern Canadian shelf and the innermost submodel of a fine resolution of ~180 m for simulating the 3D coastal circulation and hydrography over Lunenburg Bay of Nova Scotia in the default setup. The NCOPS-LB is driven by meteorological and astronomical forcing and used to study the storm-induced circulation over the ISS during tropical storm Alberto. Model results demonstrate that the coastal circulation and hydrographic distributions over the ISS are affected significantly by tides, local wind forcing, and remotely generated coastal waves during the study period.  相似文献   

17.
A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations.  相似文献   

18.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   

19.
ABSTRACT

A forecasting model is developed using a hybrid approach of artificial neural network (ANN) and multiple regression analysis (MRA) to predict the total typhoon rainfall and groundwater-level change in the Zhuoshui River basin. We used information from the raingauge stations in eastern Taiwan and open source typhoon data to build the ANN model for forecasting the total rainfall and the groundwater level during a typhoon event; then we revised the predictive values using MRA. As a result, the average accuracy improved up to 80% when the hybrid model of ANN and MRA was applied, even where insufficient data were available for model training. The outcome of this research can be applied to forecasts of total rainfall and groundwater-level change before a typhoon event reaches the Zhuoshui River basin once the typhoon has made landfall on the east coast of Taiwan.  相似文献   

20.
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter (α C h =?0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号