首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

2.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

3.
A common effective method to reduce the seismic response of liquid storage tanks is to isolate them at base using base-isolation systems. It has been observed that in many earthquakes, the foregoing systems significantly affect on the whole system response reduction. However, in exceptional cases of excitation by long-period shaking, the base-isolation systems could have adverse effects. Such earthquakes could cause tank damage due to excessive liquid sloshing. Therefore, the numerical seismic response of liquid storage tanks isolated by bilinear hysteretic bearing elements is investigated under long-period ground motions in this research. For this purpose, finite shell elements for the tank structure and boundary elements for the liquid region are employed. Subsequently, fluid–structure equations of motion are coupled with governing equation of base-isolation system, to represent the whole system behavior. The governing equations of motion of the whole system are solved by an iterative and step-by-step algorithm to evaluate the response of the whole system to the horizontal component of three ground motions. The variations of seismic shear forces, liquid sloshing heights, and tank wall radial displacements are plotted under various system parameters such as the tank geometry aspect ratio (height to radius), and the flexibility of the isolation system, to critically examine the effects of various system parameters on the effectiveness of the base-isolation systems against long-period ground motions. From these analyses, it may be concluded that with the installation of this type of base-isolation system in liquid tanks, the dynamic response of tanks during seismic ground motions can be considerably reduced. Moreover, in the special case of long-period ground motions, the seismic response of base-isolated tanks may be controlled by the isolation system only at particular conditions of slender and broad tanks. For the case of medium tanks, remarkable attentions would be required to be devoted to the design of base-isolation systems expected to experience long-period ground motions.  相似文献   

4.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

5.
This paper investigates the effects of foundation embedment on the seismic behavior of fluid-elevated tank-foundation–soil system with a structural frame supporting the fluid containing tank. Six different soil types defined in the well-known seismic codes were considered. Both the sloshing effects of the fluid and soil-structure interaction of the elevated tanks located on these six different soils were included in the analyses. Fluid-elevated tank-foundation–soil systems were modeled with the finite element (FE) technique. The fluid-structure interaction was taken into account using Lagrangian fluid FE approximation implemented in the general purpose structural analysis computer program, ANSYS. FE model with viscous boundary was used to include elevated tank-foundation–soil interaction effects. The models were analyzed for the foundations with and without embedment. It was found that the tank roof displacements were affected significantly by the embedment in soft soil, however, this effect was smaller for stiff soil types. Except for soft soil types, embedment did not affect the other response parameters, such as sloshing displacement, of the systems considered in this study.  相似文献   

6.
In this paper, a study on the transient response of an elastic structure embedded in a homogeneous, isotropic and linearly elastic half-plane is presented. Transient dynamic and seismic forces are considered in the analysis. The numerical method employed is the coupled Finite-Element–Boundary-Element technique (FE–BE). The finite element method (FEM) is used for discretization of the near field and the boundary element method (BEM) is employed to model the semi-infinite far field. These two methods are coupled through equilibrium and compatibility conditions at the soil–structure interface. Effects of non-zero initial conditions due to the pre-dynamic loads and/or self-weight of the structure are included in the transient boundary element formulation. Hence, it is possible to analyse practical cases (such as dam–foundation systems) involving initial conditions due to the pre-seismic loads such as water pressure and self-weight of the dam. As an application of the proposed formulation, a gravity dam has been analysed and the results for different foundation stiffness are presented. The results of the analysis indicate the importance of including the foundation stiffness and thus the dam–foundation interaction.  相似文献   

7.
An approach is formulated for the linear analysis of three-dimensional dynamic soil–structure interaction of asymmetric buildings in the time domain, in order to evaluate the seismic response behaviour of torsionally coupled buildings. The asymmetric building is idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure is modeled as linear elastic solid elements. The contact surface between foundation mat and solid elements of soil is discretised by linear plane interface elements with zero thickness. An interface element is further developed to function between the rigid foundation and soil. As an example, the response of soil–structure interaction of torsionally coupled system under two simultaneous lateral components of El Centro 1940 earthquake records has been evaluated and the effects of base flexibility on the response behaviour of the system are verified.  相似文献   

8.
The 1995 Hyogo-ken Nanbu (Kobe) earthquake brought about enormous damage to structures in the Hanshin and Awaji areas. In this paper the importance of investigating the relationship between ground motion and structural damage is pointed out.

Strong seismic motion was observed at the NTT (Nippon Telegraph and Telephone) Building during this earthquake. The structural damage to this building was relatively slight. In order to evaluate the relationship between ground motion and structural damage, it is necessary to assess the effects of the soil–structure interaction. In this study, the seismic response of the building and of the surface soil were evaluated by means of a nonlinear soil–structure interaction analysis using FEM.

It was found that, the nonlinearity of surface soil near the building had a great effect on the soil–structure interaction, especially the rocking of the building.  相似文献   


9.
A large reinforced concrete structure supported on piles extending to bedrock is evaluated using a seismic soil–structure interaction analysis. The physical structure, the supporting pile system, analysis model and analytical methodology used are described. Important considerations in the design of the foundation pile system using the seismic analysis loadings and deformations are discussed.  相似文献   

10.
This paper gives a brief presentation of the study on foundation of a residential business complex. The unfavourable geotechnical conditions of the site considered led to the need to improve the natural foundation soil. The most favourable and rational solution for providing safety and stability of structures was the combination of gravel and a sub-base. Computations were done as follows: analysis of the stress–strain state by using the parameters of the natural non-improved soil and analyses performed by using the parameters of the improved soil. The results from these analyses were used for analysis of the integral soil–structure system. Hence, complete information on the possibility for optimisation of the foundation structure was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号