首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract

Abstract River discharge is traditionally acquired by measuring water stage and then converting the water stage to discharge by using a stage–discharge rating curve. The possibility of monitoring river discharge by satellite has not been adequately studied hitherto, because of the difficulty in making sufficiently precise measurements of the water surface. Since the successful launch of commercial satellites with very-high-resolution sensors, it has become possible to derive ground information from satellite data. To determine river discharge in a non-trapezoidal open channel, an efficient approach has been developed that uses mainly satellite data. The method, which focuses on the measurement of surface water width coupled with river width–stage and ?remote? stage–discharge rating curves, was applied to the Yangtze River (Changjiang) and an accurate estimate of river discharge was obtained. The method can be regarded as ancillary to traditional field measurement methods or other remote sensing methods.  相似文献   

2.
Abstract

Quantifying the reliability of distributed hydrological models is an important task in hydrology to understand their ability to estimate energy and water fluxes at the agricultural district scale as well the basin scale for water resources management in drought monitoring and flood forecasting. In this context, the paper presents an intercomparison of simulated representative equilibrium temperature (RET) derived from a distributed energy water balance model and remotely-sensed land surface temperature (LST) at spatial scales from the agricultural field to the river basin. The main objective of the study is to evaluate the use of LST retrieved from operational remote sensing data at different spatial and temporal resolutions for the internal validation of a distributed hydrological model to control its mass balance accuracy as a complementary method to traditional calibration with discharge measurements at control river cross-sections. Modelled and observed LST from different radiometric sensors located on the ground surface, on an aeroplane and a satellite are compared for a maize field in Landriano (Italy), the agricultural district of Barrax (Spain) and the Upper Po River basin (Italy). A good ability of the model in reproducing the observed LST values in terms of mean bias error, root mean square error, relative error and Nash-Sutcliffe index is shown.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

3.
Morphological changes in coastal areas, especially in river estuaries, are of high interest in many parts of the world. Satellite data from both optical and radar sensors can help to monitor and investigate these changes. Data from both kinds of sensors being available for up to 30 years now, allow examinations over large timescales, while high resolution sensors developed within the last decade allow increased accuracy. So the creation of digital elevation models (DEMs) of, for example, the wadden sea from a series of satellite images is already possible. ENVISAT, successfully launched on March 1, 2002, continues the line of higher resolution synthetic aperture radar (SAR) imaging sensors with its ASAR instrument and now also allows several polarization modes for better separation of land and water areas. This article gives an overview of sensors and algorithms for waterline determination as well as several applications. Both optical and SAR images are considered. Applications include morphodynamic monitoring studies and DEM generation.
Andreas NiedermeierEmail:
  相似文献   

4.
Abstract

Sulphide mine waste extensively contaminates the Odiel River (southwest Spain), releasing sulphuric acid into the water body. Acidic water in this river precipitates and dissolves variably hydrated iron sulphate in a complex geological pattern controlled by climate. Local abrupt changes in the water pH in the vicinity of highly contaminated tributaries can be mapped by means of imaging spectroscopy using hyperspectral remote sensing (HyMap) data. Also, increased pH through mixing of acidic river water with marine water can be detected when the river reaches the area influenced by sea tides. Mapping the quality of water with hyperspectral data is confounded by vegetation, either dry or wet, rooted or floating. The spectral features of acidic water measured with a field spectrometer revealed the spectral influence of green vegetation, similar to the influence of the depth and transparency of water. Careful mapping of such parameters with HyMap data must therefore precede any spectral evaluation of water related to acidity in a river course. The spectral features detectable by HyMap data and associated with pH changes caused by contamination in river water by iron sulphide mine waste, and their controls, are described and references established for routine monitoring through hyperspectral image processing.  相似文献   

5.
ABSTRACT

Discharges and water levels are essential components of river hydrodynamics. In unreachable terrains and ungauged locations, it is quite difficult to measure these parameters due to rugged topography. In the present study an artificial neural network model has been developed for the Ramganga River catchment of the Ganga Basin. The modelled network is trained, validated and tested using daily water flow and level data pertaining to 4 years (2010–2013). The network has been optimized using an enumeration technique and a network topology of 4-10-2 with a learning rate set at 0.06, which was found optimum for predicting discharge and water-level values for the considered river. The mean square error values obtained for discharge and water level for the tested data were found to be 0.046 and 0.012, respectively. Thus, monsoon flow patterns can be estimated with an accuracy of about 93.42%.
Editor M.C. Acreman; Associate editor E. Gargouri  相似文献   

6.
Abstract

The hydrogeological conditions of a region strongly influence the low flow behaviour of river systems. The quantification of the hydrogeological conditions of a catchment and the application of hydrogeology for estimation purposes is very difficult. Up till now only a few solutions are found in the literature. This paper discusses a river network approach using hydrogeological conditions to estimate mean annual ten-day minima of discharge. The new method allows one to estimate flow parameters not only at a single site in a river stretch but also in space. The method has been tested on a data set in southwest Germany. The results showed a good agreement between the estimated discharges and the empirical data. The new method is therefore considered to be a useful tool, in particular for water management problems.  相似文献   

7.
《水文科学杂志》2012,57(1):102-111
ABSTRACT

Water temperature monitoring is important in many scientific studies. This study compares three models of water temperature sensors (Vemco Minilog II, HOBO TidbiT and HOBO Pendant) to test the importance of: (1) using cross-calibration to minimize relative errors, (2) using cross-calibration to improve on the accuracy of less accurate sensors, and (3) protecting sensors against direct solar radiation heating. The results show that when the same sensor models are cross-calibrated, the relative error can be reduced (Vemco: 0.01°C; HOBO TidbiT: 0.02°C; and HOBO Pendant: 0.07°C). Cross-calibration can also improve less accurate sensors (HOBO TidbiT and Pendant) to similar accuracies of Vemco (±0.1°C). Finally, no evidence of solar radiation heating was observed for Vemcos (unprotected); however, HOBO TidbiT and Pendant showed heating up to 2°C (maximum). When HOBO TidbiT and Pendant are shielded (flow-through system), heating is no longer an issue.  相似文献   

8.
Abstract

With increased interest and requirements in surface water quality and hydrodynamics, additional information is needed about water flow in streams. The mobile OTT Qliner with acoustic Doppler technology (ADQ) provides a highly efficient and accurate way of collecting this information. For this study we completed 366 measurements of flow velocity, water depth and discharge with ADQ from September 2010 to June 2011 at 174 cross-sections in eight catchments of different sizes located in northern Germany, central Germany and southeastern China. The measurements were used to study the accuracy, reproducibility and sensitivity of the device, and to improve the hydrodynamic sampling for medium-sized rivers and channels by investigating its internal settings. The observations reported clearly show that the results of flow average, profile, layer and point values obtained with the ADQ compare very well with those of electromagnetic or ultrasonic devices. In general, the average flow velocity gives the highest agreement. Vertical velocity has a better quality than the layer velocity, which indicates a greater precision in the horizontal than in the perpendicular direction. Point velocity, the composite of vertical velocity and layer velocity, has intermediate precision. Tests on internal settings revealed that measurement is more sensitive to cell size than to time interval setting. A cell size to depth ratio of between 0.1 and 0.2 m produced the highest reliability. A measurement period of 30 s is needed for velocities faster than 0.3 m/s; for shallow and slow-flowing rivers, an interval of 50 s or even greater is recommended. The closer the measured points were to the river bank or bed, the greater the measurement error. The river bed can also influence the measurement more distinctly than the river bank.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Song, S., Schmalz, B., Hörmann, G., and Fohrer, N., 2012. Accuracy, reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in medium-sized rivers. Hydrological Sciences Journal, 57 (8), 1626–1641.  相似文献   

9.
ABSTRACT

Despite several studies of spatial and temporal variation in water temperature characteristics, few investigations of longer-term water temperature behaviour in Britain rivers have been undertaken. This paper reports the results from a 10-year study of river water temperatures at three monitoring stations on the River Exe, Devon, UK. Data concerning annual statistics, seasonal regime, diurnal variation, duration characteristics and accumulated temperature are analysed and reveal essentially stable water temperature behaviour over the decade 1974–1983. Contrasts between monitoring stations are also evident and reflect the effects of regional and more local controls as well as the influence of hydrological factors. In spite of these differences, water temperature behaviour is largely synchronous across this river system.  相似文献   

10.
Abstract

Abstract Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use.  相似文献   

11.
Abstract

The River Kali in western Uttar Pradesh, India is a typical water course for untreated municipal and industrial effluents. The river receives considerable amounts of waste every day from the industries and municipal area of Muzaffarnagar town. Agricultural runoff is the other major factor in pollution of the river water. The mass balance calculations conducted on the river reach indicate that nitrate and phosphate from the non-point sources constitute 32.4 and 11.2% of the total load, respectively. The resulting differential loading, if adjusted for uncharacterized non-point contribution to the load, may represent the total point sources load to the river minus any losses due to volatilization, settling, and/or degradation. Indirect monitoring using upstream/downstream sampling locations provides a viable alternative to conventional methods for measuring the changes in the concentration and/or load to the river.  相似文献   

12.
Taking continuous spatiotemporal in situ measurements with multi‐probes in fast‐flowing waters/rivers can be problematic because the sensors may be damaged by high shear forces and flotsam. To protect the multi‐probe and to enable easy access for the maintenance and calibration of the sensors, a special multi‐probe holder fixed in a hydrographic slot was developed. The validation of the probe system revealed a “memory effect” at short time scales (< 10 s) within sharp gradients caused by the overflow container of the multi‐probe rack keeping the sensors submerged in the sample water. Continuously recorded data (conductivity, temperature, pH, oxygen concentration and saturation, as well as in vivo fluorescence of chlorophyll‐a) from a research cruise on board the RV ALBIS along the river Elbe (river km 309) and entering the river Saale are presented. This river stretch upstream of the city of Magdeburg to the mouth of the Saale tributary was found to have a complex physicochemical character, which is attributable to the long mixing process of water from the river Saale and the river Elbe.  相似文献   

13.
Abstract

Accurate forecasting of streamflow is essential for the efficient operation of water resources systems. The streamflow process is complex and highly nonlinear. Therefore, researchers try to devise alterative techniques to forecast streamflow with relative ease and reasonable accuracy, although traditional deterministic and conceptual models are available. The present work uses three data-driven techniques, namely artificial neural networks (ANN), genetic programming (GP) and model trees (MT) to forecast river flow one day in advance at two stations in the Narmada catchment of India, and the results are compared. All the models performed reasonably well as far as accuracy of prediction is concerned. It was found that the ANN and MT techniques performed almost equally well, but GP performed better than both these techniques, although only marginally in terms of prediction accuracy in normal and extreme events.

Citation Londhe, S. & Charhate, S. (2010) Comparison of data-driven modelling techniques for river flow forecasting. Hydrol. Sci. J. 55(7), 1163–1174.  相似文献   

14.
Abstract

Abstract Evaporation is one of the fundamental elements in the hydrological cycle, which affects the yield of river basins, the capacity of reservoirs, the consumptive use of water by crops and the yield of underground supplies. In general, there are two approaches in the evaporation estimation, namely, direct and indirect. The indirect methods such as the Penman and Priestley-Taylor methods are based on meteorological variables, whereas the direct methods include the class A pan evaporation measurement as well as others such as class GGI-3000 pan and class U pan. The major difficulty in using a class A pan for the direct measurements arises because of the subsequent application of coefficients based on the measurements from a small tank to large bodies of open water. Such difficulties can be accommodated by fuzzy logic reasoning and models as alternative approaches to classical evaporation estimation formulations were applied to Lake Egirdir in the western part of Turkey. This study has three objectives: to develop fuzzy models for daily pan evaporation estimation from measured meteorological data, to compare the fuzzy models with the widely-used Penman method, and finally to evaluate the potential of fuzzy models in such applications. Among the measured meteorological variables used to implement the models of daily pan evaporation prediction are the daily observations of air and water temperatures, sunshine hours, solar radiation, air pressure, relative humidity and wind speed. Comparison of the classical and fuzzy logic models shows a better agreement between the fuzzy model estimations and measurements of daily pan evaporation than the Penman method.  相似文献   

15.
16.
Abstract

Experimental work on electromagnetic streamflow measurements on the tidal Fraser River in British Columbia shows that the method of using the earth's magnetic field has two advantages: it gives an instantaneous value of the water velocity integrated over the entire cross section of the river and it is independent of temperature. In the Canadian climate both factors are important. The instrumentation is relatively inexpensive and it consists of a digital to analog converter, strip chart recorder, cable and silver electrodes. The instrumentation is essential for noise filtering and signal amplification. However, the final interpretation of the measured signal is quite difficult; it requires measurements from an electronic analog of the river cross section, resistivity of the ground below, conductivity of the water and a numerical hydrodynamic model. The flow velocities obtained from the measurements of induced potentials, caused by the Fraser River flowing across the earth's magnetic field, compared favourably with velocities computed from a proven hydrodynamic numerical model.  相似文献   

17.
Abstract

Little is known about the salt intrusion behaviour in Malaysian estuaries. Study of salt intrusion generally requires large amounts of data, especially if 2-D or 3-D numerical models are used; thus, in data-poor environments, 1-D analytical models are more appropriate. A fully analytical 1-D salt intrusion model, which is simple to implement and requires minimal data, was tested in six previously unsurveyed Malaysian estuaries (Kurau, Perak, Bernam, Selangor, Muar and Endau). The required data can be collected during a single day of observations. Site measurements were conducted during the dry season (June–August 2012 and February–March 2013) near spring tide. Data on cross-sections (by echo-sounding), water levels (by pressure loggers) and salinity (by moving boat) were collected as model input. A good fit was demonstrated between the simulated and observed salinity distribution for all six estuaries. Additionally, the two calibration parameters (the Van der Burgh coefficient and the boundary condition for the dispersion) were compared with the existing predictive equations. Since gauging stations were only present in some nested catchments in the drainage basins, the river discharge had to be up-scaled to represent the total discharge contribution of the catchments. However, the correspondence between the calibration coefficients and the predictive equations was good, particularly in view of the uncertainty in the river discharge data used. This confirms that the predictive salt intrusion model is valid for the cases studied in Malaysia. The model provides a reliable, predictive tool, which the water authority of Malaysia can use for making decisions on water abstraction or dredging.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   

18.
Abstract

Access to hydrometric information underpins many areas of effective water management. This paper explores the operational practices of one national hydrological information service, the UK National River Flow Archive, in collating, managing and providing access to river flow data. An information lifecycle approach to hydrometric data management is advocated, with the paper detailing current UK procedures in the areas of: monitoring network design and development; data sensing and recording; validation and archival; synthesis and analysis; and data dissemination. The methods and policies outlined herein are widely transferable to other hydrological data archives around the world.

Editor D. Koutsoyiannis

Citation Dixon, H., Hannaford, J., and Fry, M.J., 2013. The effective management of national hydrometric data: experiences from the United Kingdom. Hydrological Sciences Journal, 58 (7), 1383–1399.  相似文献   

19.
Abstract

An understanding of hydrology is a prerequisite for ensuring the successful management, conservation and restoration of wetland environments. Frequently, however, little is known about historical hydrological conditions, such as water levels, within wetlands. Moreover, many channel and ditch systems in wetlands are not routinely monitored, except perhaps for research purposes. A methodology is presented herein which makes use of satellite imagery to indirectly provide remotely sensed observations of water levels within channels and ditches. Using multi-temporal Landsat Thematic Mapper (TM) imagery and simultaneous ground-based measurements of water levels, statistical relationships are established between satellite-derived effective wet ditch widths and measured water levels in the drainage system of the Elmley Marshes, southeast England. These relationships can be used subsequently to estimate historical ditch water levels and to monitor contemporary ditch water levels in the wetland. The study shows that satellite imagery has much to offer in monitoring changes in the hydrological regime of wetlands and in providing complimentary approaches to field monitoring.  相似文献   

20.
Abstract

Control of summer river temperature is needed for maintaining water temperature standards to protect aquatic biota and wildlife habitats. Given the fact that instream discharge, among meteorological and hydrological factors, may be the only one that can be practically managed, is it feasible to moderate summer river temperature through reservoir and streamflow regulations? An analysis is conducted to quantify the effects of the magnitude of instream flow on summer river temperature with weather as a reference. Relationships between water temperature and river discharge or flow depth are developed using a simplified model and adopting the concept of equilibrium temperature and bulk surface heat exchange coefficient. The relationships are validated against continuous 5-year field measurements at the central Platte River, Nebraska, USA. It was found that the variation of daily maximum water temperature with flow was stronger than that of daily mean. A critical discharge was obtained, which divides dramatic drop and slow variation in river temperature values. The existence of the critical discharge makes it possible to reduce or minimize the occurrence of daily maximum water temperature exceeding a standard at a river reach by increasing discharge to an achievable level. This study advances understanding of impacts of instream flow on summer river temperature and provides information useful in proper planning and design of reservoir operations and streamflow management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号