首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between the Earth’s ionosphere and magnetosphere in a situation when artificial disturbances are generated in the F region of the auroral ionosphere with the EISCAT/Heating facility is studied. An experiment was performed in the daytime when the facility effective radiated power changed in a stepwise manner. Wavelike disturbances with periods of (130–140) s corresponding to Pc4 pulsations were simultaneously registered by the method of bi-static backscatter and with ground magnetometers. The variations in the Doppler frequency shift were correlated with the changes in the facility power. Incoherent scatter radar measurements at a frequency of 930 MHz (Tromsö) and numerical calculations were used in an analysis. It has been indicated that the ionospheric drift of small-scale artificial ionospheric irregularities was modulated by magnetospheric Alfvén waves. The possible effect of powerful HF radioemission on the Alfvén wave amplitude owing to the modification of the magnetospheric resonator ionospheric edge reflectivity and the generation of an outgoing Alfvén wave above the region where the ionospheric conductivity is locally intensified has been considered.  相似文献   

2.
The results of studying the Pc4–5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/Heating HF facility (Tromsø, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4–5 pulsations (80–240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4–5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth’s magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number |m| ~ 2–4), and small-scale waves (large values |m| ~ 17–20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth’s magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward (B z) and transverse (B y) IMF components.  相似文献   

3.
We have investigated ion outflows observed by the Akebono satellite and the EISCAT radar in the nightside auroral region on February 16, 1993. The Akebono satellite at about 7000 km altitude observed the region of suprathermal ion outflows and inverted-V type electron precipitation alternately with a horizontal separation of 70–150 km at the ionospheric level. These two regions corresponded to the upward and downward field-aligned current region, respectively, and intense ELF waves were observed in the ion outflow region. From the EISCAT VHF radar observation (Common Program 7 mode), it has been suggested that the ion outflow region and the enhanced electron temperature region were aligned along geomagnetic field lines with vertical and horizontal separations of 200–400 and 70–80 km, respectively and these two regions convected equatorward across the EISCAT radar at Tromsø site. Based on these results, we propose a model for this ion outflow as follows. In the nightside auroral region, downward FAC regions exist near the edge of the inverted-V type electron precipitation regions. ELF waves are excited probably by a plasma instability due to the upward thermal electron beam carrying the downward FACs, and these ELF waves cause transverse ion heating at the top of the ionosphere. The produced ion conics contribute significantly to ion outflow.  相似文献   

4.
Since the middle of 1995, an HF Doppler sounder has been running almost continuously in northern Norway, with the receiver at Ramfjordmoen and the transmitter at Seljelvnes. Concurrent operation of the EISCAT UHF radar in common programme (CP-1) mode has made it possible to study the ionospheric signature of a magnetospheric ULF wave. These are the first results of such wave signatures observed simultaneously in both instruments. It has been demonstrated that the observed Doppler signature was mainly due to the vertical bulk motion of the ionosphere caused by the electric field perturbation of the ULF wave and the first direct observational confirmation of a numerical simulation has been achieved. The wave, which was Alfvénic in nature, was detected by the instruments 8° equatorward of the broad resonance region. The implications for the deduced wave modes in the ionosphere and the mechanism producing the HF Doppler variations are discussed.Presented at the Eighth International EISCAT Workshop, Leicester, UK, June 1997  相似文献   

5.
Experimental results are presented from ionospheric tomography, the EISCAT Svalbard radar and the CUTLASS HF radar. Tomographic measurements on 10 October 1996, showing a narrow, field-aligned enhancement in electron density in the post-noon sector of the dayside auroral zone, are related to a temporal increase in the plasma concentration observed by the incoherent scatter radar in the region where the HF radar indicated a low velocity sunwards convection. The results demonstrate the complementary nature of these three instruments for polar-cap ionospheric studies.  相似文献   

6.
The experimental studies of the specific behavior of small-scale artificial ionospheric irregularities at midlatitudes, performed using the Sura HF heating facility, are analyzed. The observations were performed in September 2006, using the method of bi-static backscatter by artificial ionospheric irregularities on the Armavir-Sura-St. Petersburg and Samara-Sura-Rostov-on-Don diagnostic paths. It has been detected that the Doppler frequency shift of scattered signals at 3–7 Hz was split on the Armavir-Sura-St. Petersburg path from 1500 to 1600 UT on September 6, 2006. The simultaneous measurements on the Samara-Sura-Rostov-on-Don path indicated that only one signal of bi-static backscatter was present. An analysis of the experimental data, performed using the numerical simulation results, indicated that the ordinary and extraordinary polarization modes of bi-static backscatter signals could be simultaneously observed on September 6, 2006, on the Armavir-Sura-St. Petersburg path.  相似文献   

7.
A previously developed model of the high-latitude ionosphere is used to calculate the distribution of the ionospheric parameters in the polar region. A specific method for specifying input parameters of the mathematical model, using the experimental data obtained by the method of satellite radio tomography, is used in this case. The spatial distributions of the ionospheric parameters characterized by a complex inhomogeneous structure in the high-latitude region, calculated with the help of the mathematical model, are used to simulate the HF propagation along the meridionally oriented radio paths extending from middle to high latitudes. The method for improving the HF communication between a midlatitude transmitter and a polar-cap receiver is proposed.  相似文献   

8.
Artificial periodic irregularities (API) are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Troms0, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHP incoherent-scatter-radar (ISR) data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the data below 60 km but is larger above 60 km by a factor of up to 2 at 64 km. The comparisons with the model are considered to be a good basis for more refined comparisons.  相似文献   

9.
The case study of four Pc1 subauroral pulsation events from Finland has been carried out on the basis of the full-wave numerical method. This method has been applied to simultaneous Scandinavian EISCAT radar measurements of the ionospheric plasma parameters, and their vertical (altitude) profiles have been utilized. Two alternative plasma profiles with different ion composition displays have been put to the test. A comparison between both types of the modeled ionospheric Alfvén resonator (IAR) ground signal frequency response and the frequency range of the Pc1 signal records has been studied. The results of the applied method can illustrate possible quiescent or disturbance changes in the upper ionosphere above the dense F2 layer. The ionospheric region up to ∼ 2000 km has been taken into account for this comparative analysis.  相似文献   

10.
The observations of the state of the midlatitude ionospheric D region during the March 29, 2006, solar eclipse, based on the measurements of the characteristics of partially reflected HF signals and radio noise at a frequency of f = 2.31 MHz, are considered. It has been established that the characteristic processes continued for 2–4 h and were caused mainly by atmospheric gas cooling, decrease in the ionization rate, and the following decrease in the electron density. An increase in the electron density on average by 200–250% approximately 70–80 min after the eclipse beginning at altitudes of 90–93 km and approximately 240 min after the end of the solar eclipse at altitudes of 81–84 km, which lasted about 3–4 h, has been detected experimentally. This behavior of N is apparently caused by electron precipitation from the magnetosphere into the atmosphere during and after the solar eclipse. Based on this hypothesis, the fluxes of precipitating electrons (about 107–108 m?2s?1) have been estimated using the experimental data.  相似文献   

11.
The CUTLASS Finland radar, which comprises an integral part of the SuperDARN system of HF coherent radars, provides near continuous observations of high-latitude plasma irregularities within a field-of-view which extends over some four million square kilometres. Within the Finland radar field-of-view lie both the EISCAT mainland and EISCAT Svalbard incoherent scatter radar facilities. Since the CUTLASS Finland radar commenced operation, in February 1995, the mainland EISCAT UHF radar has been run in common programme 1 and 2 modes for a total duration exceeding 1000 h. Simultaneous and spatially coincident returns from these two radars over this period provide the basis for a comparison of irregularity drift veloCity and F-region ion veloCity. Initial comparison is limited to velocities from four intervals of simultaneous radar returns; intervals are selected such that they exhibit a variety of veloCity signatures including that characteristic of the convection reversal and a rapidly fluctuating veloCity feature. Subsequent comparison is on a statistical basis. The velocities measured by the two systems demonstrate reasonable correspondence over the veloCity regime encountered during the simultaneous occurrence of coherent and incoherent scatter; differences between the EISCAT UHF measurements of F-region ion drift and the irregularity drift velocities from the Finland radar are explained in terms of a number of contributing factors including contamination of the latter by E-region echoes, a factor which is investigated further, and the potentially deleterious effect of discrepant volume and time sampling intervals.  相似文献   

12.
The relationship between the critical frequency of the F 2 layer and the atmospheric characteristics has been obtained in a general form. It has been shown that this relation makes it possible to sufficiently accurately describe the daytime values of foF2 while comparing them with the observed monthly median values. Such comparisons were performed, first, for the data of measurements in Irkutsk using the DPS-4 digital ionosonde in 2003–2006 and, second, based on the annual variations in the noon foF2 values at 24 stations of the Northern Hemisphere in 1984. The calculations were performed using the MSIS-86 thermospheric model [Hedin, 1987].  相似文献   

13.
Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.  相似文献   

14.
An annular eclipse occurred over Europe in the morning hours of 3 October 2005. The well-defined obscuration function of the solar radiation during the eclipse provided a good opportunity to study the ionospheric/thermospheric response to solar radiation changes. Since the peak electron density behavior of the ionospheric F2 layer follows the local balance of plasma production, loss and transport, the ionospheric plasma redistribution processes significantly affect the shape of the electron density profile. These processes are discussed here based on a comparison of vertical incidence sounding (VS) and vertical total electron content (TEC) data above-selected ionosonde stations in Europe. The equivalent slab thickness, derived with a time resolution of 10 min, provides relatively good information on the variation of the electron density profile during the eclipse. The computations reveal an increased width of the ionosphere around the maximum phase. As indicated by the available measurements over Spain, the photo production is significantly reduced during the event leading to a slower increase of the total ionization in comparison with the neighboring days. The supersonic motion of the Moon's cool shadow through the atmosphere may generate atmospheric gravity waves that propagate upward and are detectable as traveling ionospheric disturbances at ionospheric heights. High-frequency (HF) Doppler shift spectrograms were recorded during the eclipse showing a distinct disturbance along the eclipse path. Whereas the ionosonde measurements at the Ebro station/Spain in the vicinity of the eclipse path reveal the origin of the wave activity in the lower thermosphere below about 180 km altitude, the similar observations at Pruhonice/Czech Republic provide arguments to localize the origin of the abnormal waves in the middle atmosphere well below the ionospheric heights. Although ionosonde and HF Doppler measurements show enhanced wave activity, the TEC data analysis does not, which is an indication that the wave amplitudes are too small for detecting them via this interpolation method. The total ionization reduces up to about 30% during the event. A comparison with similar observations from the solar eclipse of 11 August 1999 revealed a quite different ionospheric behavior at different latitudes, a fact that needs further investigation.  相似文献   

15.
We present the results of complex experiments dealing with the impact of powerful HF radiowaves on the high-latitude ionosphere using the European Incoherent Scatter Scientific Association (EISCAT) facilities. During the ionospheric F-region heating by powerful extraordinary (X-mode) polarized HF radiowaves under the conditions of heating near the critical f H frequency f Hf x F2 of the extraordinary wave of the F2-layer, we were first to detect the excitation of intense artificial small-scale ionospheric irregularities (ASIs), accompanied by electron temperature increases by approximately 50%. The results of coordinated satellite and ground-based observations of the powerful HF radiowave impact on the high-latitude ionosphere are considered. During ionospheric F-region heating by powerful HF radiowaves of ordinary polarization (O-mode) during evening hours, the phenomenon of ion outflow accompanied by electron temperature increases and thermal plasma expansion was revealed. Concurrent DMSP-F15 satellite measurements at a height of about 850 km indicate an O+ ion density increase. The CHAMP satellite observations identified ULF emissions at the modulation frequency (3 Hz) of the powerful HF radiowave, generated during modulated emissions of the powerful HF radiowave of O-polarization and accompanied by a substantial increase in the electron temperature and ASI generation.  相似文献   

16.
A series of experiments on modification of the ionosphere by a powerful ground HF transmitter was performed using the EISCAT heating facility in order to generate artificial magnetic pulsations in the frequency range 0.1–3 Hz. In several cases, the ionospheric electric field and the electron density vertical profile were measured with the EISCAT incoherent scatter radar. The measurement of the background values of the ionospheric parameters made it possible to verify the numerical model for generating artificial emissions. The calculated amplitudes of magnetic pulsations correspond to the values measured on the Earth’s surface. However, the model cannot explain the sporadic nature of artificial signals, which indicates that this model is incomplete. Disturbances of the neutral particle density in the upper atmosphere are one of the possible causes explaining a difference between the calculations and the experimental values. The numerical simulation indicated that the amplitude variations caused by such disturbances can be 20%. For artificial emissions whose intensity is comparable with the intensity of artificial noise, variations in the neutral components can result in the disappearance of an artificial signal on the spectrogram.  相似文献   

17.
During August 1998, the UK EISCAT special programme SP-UK-CSUB, which combines operation of both the mainland VHF and Svalbard UHF incoherent scatter radars, was run for several hours around magnetic midnight on four consecutive days. The CUTLASS Finland HF coherent scatter radar was, at these times, operating in a discretionary mode, sounding on all 16 beams, one at high-time resolution. This study presents a comparison of the velocities measured by coherent and incoherent techniques during the SP-UK-CSUB experiments. Agreement, particularly between the ion velocities measured by the EISCAT Svalbard radar and irregularity drift measurements by the Finland radar, is remarkable, thereby validating the scientific integrity of both data sets. This work highlights the substantive contribution to our understanding of the solar-terrestrial environment which can be made by use in concert of incoherent and HF coherent scatter radars.  相似文献   

18.
The relation of the long-period variations in the midnight and noon values of the critical frequency of the ionospheric F 2 layer at three midlatitude stations (Irkutsk, Moscow, and Boulder) to the daily mean index of geomagnetic activity in years of different solar activity has been studied. It has been found that the correlation coefficients between the above parameters depend on time of day, season, and solar activity level. The correlation coefficients are higher at night than in the daytime, especially at low solar activity. The highest absolute values of the correlation coefficient most often appear during equinoxes: April–May and September–October. It has been shown that the variability of the critical frequencies of the midlatitude ionospheric F 2 layer depends not only on geomagnetic activity but also (to a considerable degree) on the effect of the lower atmosphere.  相似文献   

19.
A new empirical model for the lower ionosphere in the auroral zone, called IMAZ, has been developed, tested and refined for use in the International Reference Ionosphere (IRI) global model. Available ionospheric data have been used to train neural networks (NNs) to predict the high latitude electron density profile. Data from the European Incoherent Scatter Radar (EISCAT), based near Tromsø, Norway (69.58°N, 19.23°E), combined with rocket-borne measurements (from 61° to 69° geomagnetic latitude) make up the database of reliable D- and E-region data.NNs were trained with different combinations of the following input parameters: day number, time of day, total absorption, local magnetic K index, planetary Ap index, 10.7 cm solar radio flux, solar zenith angle and pressure surface. The output that the NNs were trained to predict was the electron density for a given set of input parameters. The criteria for determining the optimum NN are (a) the root mean square (RMS) error between the measured and predicted output values, and (b) the ability to reproduce the absorption they are meant to represent. An optimum input space was determined and then adapted to suit the requirements of the IRI community. In addition, the true quiet electron densities were simulated and added to the database, thus allowing the final model to be valid for riometer absorptions down to 0 dB.This paper discusses the development of a NN-based model for the high-latitude, lower ionosphere, and presents results from the version developed specifically for the IRI user community.  相似文献   

20.
The CUTLASS Finland HF radar has been operated in conjunction with the EISCAT Tromsø RF ionospheric heater facility to examine a ULF wave characteristic of the development of a field line resonance (FLR) driven by a cavity mode caused by a magnetospheric impulse. When the heater is on, striating the ionosphere with field-aligned ionospheric electron density irregularities, a large enough radar target is generated to allow post-integration over only 1 second. When combined with 15 km range gates, this gives radar measurements of a naturally occurring ULF wave at a far better temporal and spatial resolution than has been achieved previously. The time-dependent signature of the ULF wave has been examined as it evolves from a large-scale cavity resonance, through a transient where the wave period was latitude-dependent and the oscillation had the characteristics of freely ringing field lines, and finally to a very narrow, small-scale local field line resonance. The resonance width of the FLR is only 60 km and this is compared with previous observations and theory. The FLR wave signature is strongly attenuated in the ground magnetometer data. The characterisation of the impulse driven FLR was only achieved very crudely with the ground magnetometer data and, in fact, an accurate determination of the properties of the cavity and field line resonant systems challenges the currently available limitations of ionospheric radar techniques. The combination of the latest ionospheric radars and facilities such as the Tromsø ionospheric heater can result in a powerful new tool for geophysical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号